【题目】已知点,点是函数上的一点,若(O为坐标原点),则的面积为( )
A.1B.2C.3D.4
【答案】B
【解析】
取点关于轴的对称点,过作交函数于点,交y轴于点A1,根据题意找出符合题意的∠ABC=∠B1AB=2∠OAB,进而可得,利用待定系数法求得一次函数关系式,进而与反比例函数关系式联立方程组求得点C坐标,由此可求得答案.
解:如图,取点关于轴的对称点,
则△AB1O≌△ABO,
∴OB=OB1,∠B1AO=∠BAO,
∴∠B1AB=2∠OAB,
过作交函数于点,交y轴于点A1,
∴∠AB1O=∠A1BO,∠B1AO=∠BA1O,∠B1AB=∠ABC,
∴△AB1O≌△A1BO,∠ABC=2∠OAB,
∴OA1=OA=2,
∴点,
设直线BC为y=kx+b,
将点与代入得
解得
∴直线的函数关系式为,
联立
得
解得(舍),
∴点的坐标为
∴
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴相交于两点,点坐标为,抛物线的对称轴是直线
(1)求抛物线的解析式;
(2)点是轴右侧抛物线图像上的一动点,设点的横坐标为.
①是否存在这样的点使得?若存在,求出的值;若不存在,请说明理由;
②若该动点在第一象限内,连接,当时,求的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求证:EC是⊙O的切线;
(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光明中学八年级一班开展了“读一本好书”的活动,委会对学生阅读书籍的情况行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布直方图和扇形统计图.根据图表提供的信息,回答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布直方图,在扇形统计图中,“戏剧”类对应的扇形圆心角是多少度?
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的人恰好是甲和丙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市“青山绿水”行动中,某社区计划对面积为的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两工程队每天各能完成多少面积的绿化;
(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点坐标为的抛物线经过点,与轴的交点在,之间(含端点),则下列结论:①;②;③对于任意实数,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形的边长为4,点,分别在边,上,且,直线与直线交于点,直线交直线于点,连接,.
(1)如图1,当时,求证:平分;
(2)如图2,将图1中的绕点逆时针旋转,其他条件不变,(1)的结论是否成立?说明理由;
(3)当是等腰三角形时,直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过线段AB的端点B作射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).
(1)求证:≌;
(2)判断CF与AB的位置关系,并说明理由;
(3)试探究AE+EF+AF与2AB是否相等,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com