精英家教网 > 初中数学 > 题目详情
10.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度沿射线CB运动,当点P运动到点D时停止运动,设运动时间为t秒.
(1)当t为多少时,以A、B、Q、P为顶点的四边形成为平行四边形?
(2)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.

分析 (1)因为∠B=90°,AP∥BQ,由矩形的判定可知当AP=BQ时,四边形ABQP成为矩形;
(2)因为PD∥BQ,当PD=BQ=BP时,四边形PBQD能成为菱形,先由PD=BQ求出运动时间t的值,再代入求BP,发现BP≠PD,判断此时四边形PBQD不能成为菱形;设Q点的速度改变为vcm/s时,四边形PBQD在时刻t为菱形,根据PD=BQ=BP列出关于v、t的方程组,解方程组即可求出点Q的速度.

解答 解:(1)∵∠B=90°,AP∥BQ,
∴当AP=BQ时,四边形ABQP成为矩形,
此时有t=22-3t,解得t=$\frac{11}{2}$.
∴当t=$\frac{11}{2}$s时,四边形ABQP成为矩形;


(2)四边形PBQD不能成为菱形.理由如下:
∵PD∥BQ,
∴当PD=BQ=BP时,四边形PBQD能成为菱形.
由PD=BQ,得16-t=22-3t,解得t=3,
当t=3时,PD=BQ=13,BP=$\sqrt{A{B}^{2}+A{P}^{2}}$=$\sqrt{{8}^{2}+{t}^{2}}$=$\sqrt{{8}^{2}+{3}^{2}}$=$\sqrt{73}$≠13,
∴四边形PBQD不能成为菱形;
如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,
由题意,得$\left\{\begin{array}{l}{16-t=22-vt}\\{16-t=\sqrt{{8}^{2}+{t}^{2}}}\end{array}\right.$,解得 $\left\{\begin{array}{l}{t=6}\\{v=2}\end{array}\right.$.
故点Q的速度为2cm/s时,能够使四边形PBQD在某一时刻为菱形.

点评 本题借助动点主要考查了矩形、菱形的判定,勾股定理,等腰梯形的判定与性质,以及方程和方程组在几何图形中的应用,难度适中,用含t的代数式正确表示出相关线段的长度是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.已知抛物线y=a(x-1)(x-3)-2(a≠0)与x轴交点的横坐标为m,n,且m<n,又点(x0,y0)是抛物线上一点,则下列结论正确的是(  )
A.该抛物线可由抛物线y=ax2向右平移2个单位,向下平移2个单位得到
B.若1<m<n<3,则a>0
C.若1<x0<3,则y0<0
D.不论a取何值,m+n=4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,CD是△ABC的角平分线,AE⊥CD,垂足为E,F是AC的中点,求证:EF∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在正方形ABCD中,点E,F分别为CD,AD上的点,点B′、C′分别为边BC、AB上的点,B′E⊥CF于P,连接AP、BP,∠APB=90°.
(1)求证:∠FB′C′=90°.
(2)用尺规图法作出正方形ABCD边上的所有Q点,使∠FQC′=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先阅读,然后解方程组.
解方程组
$\left\{\begin{array}{l}{x-y-1=0①}\\{4(x-y)-y=5②}\end{array}\right.$  时,
可由 ①得x-y=1,③
然后再将③代入②得4×1-y=5,求得y=-1,
从而进一步求得$\left\{\begin{array}{l}{x=0①}\\{y=-1②}\end{array}\right.$ 这种方法被称为“整体代人法”,
请用这样的方法解下列方程组$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,在△ABC中,∠ABC与∠ACB的角平分线交于O点.
(1)若∠A=40°,则∠BOC=110°;
(2)若∠A=n°,则∠BOC=90+$\frac{n}{2}$°;
(3)若∠A=n°,∠ABC与∠ACB的角平分线交于O点,∠ABO的平分线与∠ACO的平分线交于点O1,…,∠ABO2016的平分线与∠ACO2016的平分线交于点O2017,则∠O2017=$\frac{1}{{2}^{2018}}$×180°+$\frac{{2}^{2018}-1}{{2}^{2018}}$n°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,矩形ABCD的对角线AC,BD交于点O,∠AOB=60°,AB=4,则矩形ABCD的面积为(  )
A.16$\sqrt{3}$B.32C.8$\sqrt{3}$D.32$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算正确的是(  )
A.($\frac{1}{3}$)-2=-9B.$\sqrt{4}$=±2C.-2(a-b)=-2a-2bD.ab4÷(-ab)=-b3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.甲乙两地相距8000米.张亮骑自行车从甲地出发匀速前往乙地,出发10分钟后,李伟步行从甲地出发同路匀速前往乙地.张亮到达乙地后休息片刻,以原来的速度从原路返回.如图所示是两人离甲地的距离y(米)与李伟步行时间x(分)之间的函数图象.
(1)求两人相遇时李伟离乙地的距离;
(2)请你判断:当张亮返回到甲地时,李伟是否到达乙地?

查看答案和解析>>

同步练习册答案