如图,OA=OB,点A的坐标是(-2,0),OB与x轴正方向夹角为600, 请画出过A,O,B三点的圆,写出圆心的坐标是 .
【解析】
如图;过B作BE⊥x轴于E;Rt△OBE中,OB=OA=2,∠BOE=60°;则OE=1,BE=, 故B(1,);以OA、OB为边作平行四边形AOBD,由于OA=OB,则四边形AOBD是菱形;所以点D一定在AB的垂直平分线上(菱形的对角线互相垂直平分);连接OA;由于OA=OD,∠DAO=∠BOE=60°,则△AOD是等边三角形;所以点D也在AO的垂直平分线上;故点D为△OAB的外心,所以D的坐标为(-1,)
【解析】
试题分析:以OA、OB为边,AB为对角线作平行四边形AOBD,由于OA=OB,那么四边形AOBD是菱
形;由于菱形的对角线互相垂直平分,那么D点一定在AB的垂直平分线上;连接OD,易证得∠
DAO=60°,且AD=OA,所以点D也在OA的垂直平分线上;那么点D即为△AOB的外心,先求出B
点坐标,即可根据A、O、B三点坐标得到点D的坐标.
考点:三角形的外接圆与外心,坐标与图形的性质
科目:初中数学 来源:2014-2015学年福建省龙岩市分校九年级上学期第三次阶段考试数学试卷(解析版) 题型:填空题
在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC= ;S△DEF:S四边形EFCB= 。
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市平谷区九年级上学期期末考试数学试卷(解析版) 题型:解答题
阅读下面材料:
如图1,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
(1)当点D是BC边上的中点时,S△ABD:S△ABC= ;
(2)如图2,在△ABC中,点O是线段AD上一点(不与点A、D重合),且AD=nOD,连结BO、CO,求S△BOC:S△ABC的值(用含n的代数式表示);
(3)如图3,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,补全图形并直接写出的值.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市平谷区九年级上学期期末考试数学试卷(解析版) 题型:选择题
在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号为偶数的概率为
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市九年级上学期期中检测数学试卷(解析版) 题型:填空题
对于抛物线 .
(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市九年级上学期期中检测数学试卷(解析版) 题型:解答题
已知抛物线.
(1)用配方法将化成的形式;
(2)将此抛物线向右平移1个单位,再向上平移2个单位,求平移后所得抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年北京市九年级上学期期中检测数学试卷(解析版) 题型:选择题
如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠B=20°,则∠ADC的度数为( ).
A.20° B.40° C.70° D.90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com