精英家教网 > 初中数学 > 题目详情
如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?
(1)由已知,矩形的另一边长为(18-x)m
则y=x(18-x)=-x2+18x
自变量x的取值范围是0<x<18.

(2)∵y=-x2+18x=-(x-9)2+81
∴当x=9时(0<9<18),苗圃的面积最大,最大面积是81m2
又∵a=-1<0,y有最大值,
∴当x=-
18
2×(-1)
=9
时(0<x<18),
y最大值=
0-182
4×(-1)
=81(m2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,点A,B,M的坐标分别为(1,4)、(4,4)和(-1,0),抛物线y=ax2+bx+c的顶点在线段AB(包括线段端点)上,与x轴交于C、D两点,点C在线段OM上(包括线段端点),则点D的横坐标m的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A、B两点.
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)在(2)的基础上,设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=-
3
4
x+6
与坐标轴交于A、B点,AE是∠BAO的平分线,过点B作BE⊥AE,垂足为E,过E作x轴的垂线,垂足为M.
(1)求证:M为OB的中点;
(2)求以E为顶点,且经过点A的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

武汉银河影院对去年贺岁片《非诚勿拢》的售票情况进行调查:若票价定为20元/张,则每场可卖电影票400张,若单价每涨1元,每场就少售出8张,设每张票涨价x元(x为正整数).
(1)求每场的收入y与x的函数关系式;
(2)设某场的收入为9000元,此收入是否是最大收入?请说明理由;
(3)请借助图象分析,售价在什么范围内每趟的总收入不低于8000元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.
(1)求m的值;
(2)画出这条抛物线;
(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答:当x取什么值时,y1≥y2

查看答案和解析>>

同步练习册答案