分析 (1)首先得出△ABD≌△ACE(SAS),进而利用三角形中位线定理得出GH=GF;
(2)利用全等三角形的性质结合平行线的性质得出∠FGH=∠DGF+∠HGD进而得出答案.
解答 证明:(1)∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∵F,G,H分别为BC,CD,DE的中点,
∴HG∥CE,GF∥BD,且GH=$\frac{1}{2}$CE,GF=$\frac{1}{2}$BD,
∴GH=GF;
(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵HG∥CE,GF∥BD,
∴∠HGD=∠ECD,∠GFC=∠DBC,
∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,
∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,
∴∠FGH=∠DGF+∠HGD
=∠DBC+∠GCF+∠ACD+∠ABD
=∠ABC+∠ACB
=180°-∠BAC,
∴∠FGH与∠BAC互补.
点评 此题主要考查了全等三角形的判定与性质以及三角形中位线定理,正确得出△ABD≌△ACE是解题关键.
科目:初中数学 来源: 题型:解答题
进价(元/只) | 售价(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com