精英家教网 > 初中数学 > 题目详情
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心
A
A
 点,按顺时针方向旋转
90
90
度得到;
(3)若BC=8,则四边形AECF的面积为
64
64
.(直接写结果)
分析:(1)根据正方形性质得出AB=AD,∠DAB=∠ABF=∠D=90°,证△ADE≌△ABF,推出AE=AF,∠DAE=∠FAB即可.
(2)根据全等三角形性质和旋转的性质得出即可.
(3)求出四边形AECF的面积等于正方形ABCD面积,求出正方形的面积即可.
解答:解:(1)△AEF是等腰直角三角形,
理由是:∵四边形ABCD是正方形,F是BC延长线上一点,
∴AB=AD,∠DAB=∠ABF=∠D=90°,
在△ADE和△ABF中,
AD=AB
∠D=∠ABF
DE=BF

∴△ADE≌△ABF(SAS)
∴AE=AF,∠DAE=∠FAB,
∵∠DAB=∠DAE+∠BAE=90°,
∴∠FAE=∠DAB=90°,
即△AEF是等腰直角三角形.

(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,
故答案为:A,90.

(3)∵△ADE≌△ABF,
∴SADE=S△ABF
∴四边形AECF的面积S=S四边形ABCE+S△ABF
=S四边形ABCE+S△ADE
=S正方形ABCD
=8×8
=64,
故答案为:64.
点评:本题考查了旋转性质,全等三角形的性质和判定,正方形性质的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
精英家教网
(1)填空:如图1,AC=
 
,BD=
 
;四边形ABCD是
 
梯形;
(2)请写出图1中所有的相似三角形;(不含全等三角形)
(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持△ABD不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=t,△FBP面积为S,求S与t之间的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边 AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图1,AC= _____,BD=_____ ;四边形ABCD是_____ 梯形.
(2)请写出图1中所有的相似三角形(不含全等三角形)
(3)如图2,若以AB所在直线为x轴,过点A垂直于AB的直线为y轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向x轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD。
(1)填空:如图1,AC=______,BD=______;四边形ABCD是______梯形;
(2)请写出图1中所有的相似三角形(不含全等三角形);
(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.

(1)填空:如图9,AC=         ,BD=         ;四边形ABCD是       梯形.

(2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

 


查看答案和解析>>

同步练习册答案