A. | $\sqrt{7}$ | B. | 4 | C. | 5 | D. | 2.5 |
分析 先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=$\sqrt{7}$,然后利用画法可得到OM=OC=$\sqrt{7}$,于是可确定点M对应的数.
解答 解:∵△ABC为等腰三角形,OA=OB=3,
∴OC⊥AB,
在Rt△OBC中,OC=$\sqrt{B{C}^{2}-O{B}^{2}}$=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∵以O为圆心,CO长为半径画弧交数轴于点M,
∴OM=OC=$\sqrt{7}$,
∴点M对应的数为$\sqrt{7}$.
故选:A.
点评 本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了等腰三角形的性质.
科目:初中数学 来源: 题型:选择题
A. | 8.5×103亿元 | B. | 0.85×104亿元 | C. | 8.5×104亿元 | D. | 85×102亿元 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k=-2,b=-4 | B. | k=2,b=-4 | C. | k=-4,b=2 | D. | k=4,b=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com