精英家教网 > 初中数学 > 题目详情
如图,将OA=8,AB=6的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为
(8,6)
(8,6)
;用含t的式子表示点P的坐标为
(t,
3
4
t
(t,
3
4
t

(2)记△OMP的面积为S,求S与t的函数关系式(0<t<8),并求当t为何值时,S有最大值?若有,求出这个最大值;
(3)试探究:在上述运动过程中,是否存在某一个时刻,△OPM是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
分析:(1)根据OA=8,AB=6的矩形OABC,得出B点坐标即可,再利用平行线的性质得出P点坐标即可;
(2)利用PG以及OM的长表示出△OMP的面积即可得出答案;
(3)当OP=PM时,有8-t=2t,当OP=OM时,有8-t=
5
4
t
,当OM=PM时,有
4
5
(8-t)=
5
4
t
,分别求出即可.
解答:解:(1)延长NP到OA于一点G,
∵NP⊥BC,
∴PG⊥AO,
∵OA=8,AB=6,
PG
GO
=
AB
AO
=
6
8
=
3
4

∵CN=t,
∴PG=
3
4
t,
∴B(8,6),P(t,
3
4
t
);


(2)∵PG=
3
4
t,OM=8-t,
S=
1
2
(8-t)×
3
4
t=-
3
8
t2+3t
(0<t<8),
当t=4时,S有最大值,最大值为6.

(3)当OP=PM时,有8-t=2t,
解得:t=
8
3
,∴M(
16
3
,0);
当OP=OM时,有8-t=
5
4
t

解得:t=
32
9
,∴M(
40
9
,0);
当OM=PM时,有
4
5
(8-t)=
5
4
t

解得:t=
256
57
,∴M(
200
57
,0).
综上所述,M的坐标为(
16
3
,0)或(
40
9
,0)或(
200
57
,0).
点评:此题主要考查了二次函数的综合应用以及平行线的性质和等腰三角形的性质等知识,根据已知进行分类讨论得出M点的坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为
 
;用含t的式子表示点P的坐标为
 

(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的
13
?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(湖北黄冈) 题型:解答题

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

同步练习册答案