精英家教网 > 初中数学 > 题目详情
如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)当∠A=90°时,试判断四边形DFAE是何特殊四边形?并说明理由.
(1)证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°(1分)
∵D是BC的中点,
∴BD=CD(2分)
∵AB=AC,
∴∠B=∠C,
∴∠EDB=∠FDC,
∴△BED≌△CFD(3分)

(2)∵∠BED=∠CFD=∠A=90°
∴四边形DFAE为矩形.(4分)
∵△BED≌△CFD,
∴DE=DF,(5分)
∴四边形DFAE为正方形.(6分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积是______cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,E、F、G、H分别是各边中点,如果阴影部分的面积是5cm2,那么AB的长度是______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连接大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:
(1)图甲中阴影部分的面积是多少?
(2)图甲中阴影部分正方形的边长是多少?
(3)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知ABCD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E、F在正方形ABCD的边AB、BC上,BE=CF,若CE=10cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
1
2
BC,证明:平行四边形EGFH是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.
(1)当OM⊥AC时,求证:OA=OC.
(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上,若MN⊥EF,MN=10cm,则EF=______cm.

查看答案和解析>>

同步练习册答案