精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,O为对角线AC和BD的交点,E为CO上一点,连接BE,F为∠OBE角平分线上一点,连接OF、AF,G为BE上一点且BO=BG.
(1)若GF⊥OF,OF=1,求线段OG的长度;
(2)若∠AFB=90°,求证:AF=BF+OG.

解:(1)∵BF平分∠DBE,
∴∠OBF=∠EBF.
∵在△OBF和△GBF中

∴△OBF≌△GBF(SAS),
∴OF=FG.
∵GF⊥OF,
∴∠GFO=90°.
∵OF=1,
∴OF=FG=1.
在Rt△OFG中,由勾股定理,得
OG==

(2)在线段AF上取一点M,使AM=BF,连接OM,
∵四边形ABCD是正方形,
∴OA=OB,∠AOB=90°,
∴∠OAF+∠ONA=90°.
∵∠AFB=90°,
∴∠FNB+∠OBF=90°.
∵∠ONA=∠FNB,
∴∠OAM=∠OBF.
∵在△AOM和△BOF中

∴△AOM≌△BOF(SAS),
∴OM=OF,∠AOM=∠BOF.
∵∠AOM+∠MON=90°,
∴∠BOF+∠MON=90°
即∠MOF=90°.
∴∠OFM=45°,
∴MF=OF,
∴∠BFO=∠OFM+∠AFB=135°.
∵△OBF≌△GBF,
∴∠BFG=∠BFO=135°,OF=GF.
∴∠OFG=360°-∠BFO-∠BFG=90°,
∴OG=OF,
∴OG=MF.
∵AF=AM+MF,
∴AF=BF+OG.
分析:(1)由BF平分∠DBE可以得出∠OBF=∠EBF,再有BO=BG,故可以得出△OBF≌△GBF从而得出OF=FG最后利用勾股定理就可以求出结论;
(2)先在线段AF上取一点M,使AM=BF,连接OM,根据正方形的性质可以得出△AOM≌△BOF,由全等三角形的性质可以得出△OMF是等腰直角三角形,可以得出MF=OF,根据△OBF≌△GBF可以得出△OGF是等腰直角三角形,就有OG=OF,进而可以得出结论.
点评:本题考查了角平分线的性质的运用,正方形的性质的运用,勾股定理的运用,全等三角形的判定的及性质的运用,在解答的过程中作辅助线是难点,证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案