精英家教网 > 初中数学 > 题目详情

【题目】化简计算
(1)计算:﹣22+ sin45°﹣|1﹣ |
(2)解不等式组:

【答案】
(1)解:原式=﹣ +2 × ﹣( ﹣1)

=﹣ +2﹣ +1

=


(2)解:

∵解不等式①得:x>3,

解不等式②得:x≥0,

∴不等式组的解集为x>3


【解析】(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,绝对值分别求出每一部分的值,再代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.
【考点精析】通过灵活运用整数指数幂的运算性质和一元一次不等式组的解法,掌握aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数);解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A60°,点EF分别为ADDC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AECF的长度(

A. 逐渐增加 B. 逐渐减小

C. 保持不变且与EF的长度相等 D. 保持不变且与AB的长度相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点

根据下列题意解答问题:

(1)如图1,数轴上点Q表示的数为1,点P表示的数为0,K表示的数为1,点R

表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K

有序点对的好点但点K不是有序点对的好点.同理可以判断:

P__________有序点对的好点,点R______________有序点对的好点(填不是”);

(2)如图2,数轴上点M表示的数为-1,点N表示的数为5,若点X是有序点对的好点,求点X所表示的数,并说明理由?

(3)如图3,数轴上点A表示的数为20,点B表示的数为10.现有一只电子蚂蚁C

B出发,以每秒2个单位的速度向左运动t当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于O点,AB=5,AC=6,过D点作DE//ACBC的延长线于E

(1)求BDE的周长

(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某星期天下午,小强和小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程(公里)和所用时间(分钟)之间的函数关系.下列说法中错误的是( )

A. 小强从家到公共汽车站步行了2公里 B. 小强在公共汽车站等小明用了10分钟

C. 小强乘公共汽车用了20分钟 D. 公共汽车的平均速度是30公里/小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.

(1)求抛物线的解析式;
(2)①当P点运动到A点处时,通过计算发现:POPH(填“>”、“<”或“=”);
(3)当△PHO为等边三角形时,求点P坐标;
(4)如图2,设点C(1,﹣2),问是否存在点P,使得以P、O、H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,,以为边在矩形外部作,且,连接,则的最小值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:

方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.

方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:

1)方案一中每个包装盒的价格是多少元?

2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?

3)请分别求出y1y2x的函数关系式.

4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由

查看答案和解析>>

同步练习册答案