精英家教网 > 初中数学 > 题目详情
18.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为2$\sqrt{7}$.

分析 由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=$\frac{1}{2}$BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.

解答 解:连结EF,AE与BF交于点O,如图,
∵AB=AF,AO平分∠BAD,
∴AO⊥BF,BO=FO=$\frac{1}{2}$BF=3,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
而BO⊥AE,
∴AO=OE,
在Rt△AOB中,AO=$\sqrt{A{B}^{2}-O{B}^{2}}$=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∴AE=2AO=2$\sqrt{7}$.
故答案为2$\sqrt{7}$.

点评 本题考查了平行四边形的性质、勾股定理、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,由勾股定理求出AO是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.某校为了了解八年级1500名学生每天完成作业所用时间的情况,从中对100名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是100.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5cm,则正方形A、B、C、D的面积和是25cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在等式y=x2+bx+c中,当x=-1时,y=0;当x=1时,y=-4.求(b-c)2017的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$和$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$是关于x,y的二元一次方程:ax+by=1的两个解,求$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解分式方程:$\frac{3}{{x}^{2}-9}$=1+$\frac{x}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图,AB∥CD,AB,CD与直线EF分别相交于点M和N,MP平分∠AMF,NQ平分∠DNE.求证:MP∥NQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.
Ⅰ、如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.
(1)通过证明△ADC≌△ABE,可以得到DC=BE;
Ⅱ、如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH=$\frac{1}{2}$BD,同理可得FG∥BD,FG=$\frac{1}{2}$BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;
拓展应用
(2)如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)完成下面的证明.
如图,已知AB∥CD,直线EF分別交直线AB、CD于点M、N.求证:∠EMB=∠MND.
证明:若∠EMB≠∠MND,过点M作直线A1B1
使∠EMB1=∠MND  
∴A1B1∥CD.
又∵AB∥CD
∴过点M 就有两条直线AB、A1B1平行于直线CD.
这与过直线外一点有且只有一条直线与这条直线平行矛盾.
说明∠EMA=∠MND是不对的.
于是有∠EMB=∠MND.
(2)求证:两条平行线被笫三条直线所截,同旁内角互补.

查看答案和解析>>

同步练习册答案