分析 延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.
解答 解:延长AD至E,使DE=AD,连接CE.如图所示:
在△ABD和△ECD中,$\left\{\begin{array}{l}{BD=CD}&{\;}\\{∠ADB=∠EDC}&{\;}\\{AD=ED}&{\;}\end{array}\right.$
∴△ABD≌△ECD(SAS),
∴CE=AB.
在△ACE中,CE-AC<AE<CE+AC,
即2<2AD<18,
∴1<AD<9.
故答案为:1<AD<9.
点评 此题综合运用了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com