精英家教网 > 初中数学 > 题目详情
18.如图所示,等腰直角三角形ABC的直角边长于正方形MNPQ的边长均为10cm,边CA与边MN在同一直线上,点A与M重合,让△ABC沿MN方向运动.
(1)当点A与点N重合时停止运动.试写出运动中两个图形重叠部分面积y(cm2)与MA长度x(cm)之间的函数表达式,并指出自变量x的取值范围.
(2)当点C与点M重合后,△ABC继续沿MN方向运动,点C与点N重合时停止运动,试写出运动中两个图形重叠部分面积y(cm2)与MA长度x(cm)之间的函数表达式,并指出自变量x的取值范围.

分析 (1)根据等腰直角三角形的性质和三角形的面积公式计算即可;
(2)根据等腰直角三角形的性质和梯形的面积公式计算即可.

解答 解:(1)依题意有y=$\frac{1}{2}$x2(0≤x≤10).
(2)依题意有y=$\frac{1}{2}$(x-10+10)(20-x)=$\frac{1}{2}$x2+10x(10≤x≤20).

点评 本题考查的是正方形和等腰直角三角形的性质,掌握等腰直角三角形的两锐角是45°是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有b个座位,则a、n和b之间的关系为b=a+n-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:(2$\sqrt{3}$-$\sqrt{6}$)2+($\sqrt{54}$+2$\sqrt{6}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知cosθ=$\frac{3}{5}$,求sinθtanθ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)计算:$(\frac{1}{2})^{-2}-6sin30°-(\frac{1}{\sqrt{7}})^{0}+\sqrt{2}+|\sqrt{2}-\sqrt{3}|$.
(2)解不等式组:$\left\{\begin{array}{l}{x+4≤3(x+2)}\\{\frac{x-1}{2}<\frac{x}{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=a(x+3)(x-1)交x轴于点A,B,顶点E的纵坐标为-4,P是抛物线上的一个动点(不与点A、B重合).

(1)求a的值;
(2)请在图1中探究:当∠PAB=45°时,求点P的坐标;
(3)如图2,作射线AP,BP,分别交抛物线的对称轴于点D、F.问:当点P运动时,CD+CF是否为定值?若存在,试求出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图(1),两块三角板放置在一起,将△A′B′C绕直角顶点C顺时针旋转一个锐角α成图(2),边A′B′分别交AB,AC于点P,Q,且AQ=PQ,求旋转角α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.化简:
(1)$\frac{a-b}{a-2b}$÷$\frac{{a}^{2}-{b}^{2}}{{a}^{2}-4ab+{4b}^{2}}$;             
(2)$\frac{x-3}{x-2}$÷(x+2-$\frac{5}{x-2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,某超市从一楼到二楼的电梯AB的长为18米,电梯每级的水平级宽是0.3米.竖直级高是$\frac{\sqrt{3}}{10}$米.
(1)求该电梯的坡角∠BAC的度数.
(2)若电梯以每秒上升2级的速度运行,求小明跨上电梯从一楼上升到二楼需要的时间.

查看答案和解析>>

同步练习册答案