精英家教网 > 初中数学 > 题目详情
14.解不等式组:$\left\{\begin{array}{l}{2x>x+1}\\{x+8≥4x-1}\end{array}\right.$.

分析 首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.

解答 解:$\left\{\begin{array}{l}{2x>x+1…①}\\{x+8≥4x-1…②}\end{array}\right.$,
解①得x>1,
解②得x≤3,
则不等式组的解集是1<x≤3.

点评 本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,∠ABC=∠ADC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.请说明∠A=∠C的理由.
解:因为BE、DF分别平分∠ABC、∠ADC(已知),
所以∠1=$\frac{1}{2}$∠ABC,∠3=$\frac{1}{2}$∠ADC(角平分线定义)
因为∠ABC=∠ADC(已知).
所以$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ADC(等式的性质)
(请完成以下说理过程)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=6,BC=8,则CD等于(  )
A.1B.2C.3D.4.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB是半⊙O的直径,点D是圆弧AE上一点,且∠BDE=∠CBE,点C在AE的延长线上
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE,延长ED、BA交于点G,若GA=AO,DE=5,求GD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在解决关于x,y的二元一次方程组$\left\{\begin{array}{l}{ax+by=3}\\{cx-3y=5}\end{array}\right.$时,小明由于粗心,把c写错解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,小红正确地解得$\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$,求a2b-ab2-c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:

(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=140°,∠D=75°
(2)在探究等对角四边形性质时:
小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;
(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.
要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.
(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,四边形ABCD中,∠B=90°,AB=BC=3$\sqrt{2}$,CD=8,AD=10.
(1)求∠BCD的度数.
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.把x2y2+4加上一个单项式,使其成为多项式的完全平方式,请你写出所有符合条件的单项式±4xy、$\frac{{x}^{4}{y}^{4}}{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.二次函数y=x2-2x-c  的图象如图所示,A,B两点的纵坐标分别为-4,-3,且AB=$\sqrt{2}$.
(1)求A,B两点的坐标及二次函数的解析式;
(2)用配方法求该抛物线与x轴的两个交点坐标;
(3)如果M为x轴上一点,N为y轴上一点,以点A、B、M、N为顶点的四边形是平行四边形,求直线MN的函数表达式.
(4)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,请你结合新图象回答,当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.

查看答案和解析>>

同步练习册答案