【题目】函数y=x2+bx+c的图像与x 轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图像上,CD//x轴,且CD=2,直线l 是抛物线的对称轴,E是抛物线的顶点.
(1)求b、c 的值;
(2)如图①,连接BE,线段OC 上的点F 关于直线l 的对称点F′ 恰好在线段BE上,求点F的坐标;
(3)如图②,动点P在线段OB上,过点P 作x 轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.
图 ① 图②
【答案】(1)c=-3;(2)点F的坐标为(0,-2);(3)满足题意的点Q的坐标为(,)和(,)
【解析】
(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;
(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;
(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标.在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标.
(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1,∴.
∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得:c=﹣3或c=0(舍去),∴c=﹣3;
(2)设点F的坐标为(0,m).
∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).
由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4).
∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.
∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);
(3)存在点Q满足题意.
设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.
作QR⊥PN,垂足为R.
∵S△PQN=S△APM,∴,∴QR=1.
分两种情况讨论:
①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3),∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;
②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).
同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.
综上可知存在满足题意的点Q,其坐标为或.
科目:初中数学 来源: 题型:
【题目】随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是( )
A. x<32 B. x≤32 C. x>32 D. x≥32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的方格纸中,把△ABC向右平移5个方格得△A1B1C1,再绕点B1顺时针方向旋转90°得△A2B1C2.
(1)画出平移和旋转后的图形,并标明对应字母.
(2)求顶点A从开始到结束所经过的路径的长.(结果用含有π的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△在ABC中,∠C=90°,∠B=30°,以A为圆心、任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,给出下列说法:①DM=DN;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△AB1C1, 并写出B1的坐标;
(2)将△ABC向右平移8个单位, 画出平移后的△A2B2C2, 写出B2的坐标;
(3)认真观察所作的图形, △AB1C1与△A2B2C2有怎样的位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.
(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;
(2)当⊙M与x轴相切时,求点Q的坐标;
(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(m+n+1)x+m(n≥0)的两个实数根为α、β,且α≤β.
(1)试用含α、β的代数式表示m和n;
(2)求证:α≤1≤β;
(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2)、B(,1)、C(1,1),问是否存在点P,使m+n=?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com