精英家教网 > 初中数学 > 题目详情
7.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为(  )
A.$\frac{2\sqrt{2}}{5}$B.$\frac{9\sqrt{2}}{20}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{4\sqrt{2}}{5}$

分析 过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF=$\sqrt{F{H}^{2}+A{H}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,根据平行线分线段成比例定理得到OH=$\frac{1}{3}$AE=$\frac{1}{3}$,由相似三角形的性质得到$\frac{AM}{FM}$=$\frac{AE}{FO}$$\frac{1}{\frac{5}{3}}$=$\frac{3}{5}$,求得AM=$\frac{3}{8}$AF=$\frac{3\sqrt{2}}{4}$,根据相似三角形的性质得到$\frac{AN}{FN}$=$\frac{AD}{BF}$=$\frac{3}{2}$,求得AN=$\frac{3}{5}$AF=$\frac{6\sqrt{2}}{5}$,即可得到结论.

解答 解:过F作FH⊥AD于H,交ED于O,则FH=AB=2
∵BF=2FC,BC=AD=3,
∴BF=AH=2,FC=HD=1,
∴AF=$\sqrt{F{H}^{2}+A{H}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∵OH∥AE,
∴$\frac{HO}{AE}$=$\frac{DH}{AD}$=$\frac{1}{3}$,
∴OH=$\frac{1}{3}$AE=$\frac{1}{3}$,
∴OF=FH-OH=2-$\frac{1}{3}$=$\frac{5}{3}$,
∵AE∥FO,
∴△AME∽FMO,
∴$\frac{AM}{FM}$=$\frac{AE}{FO}$$\frac{1}{\frac{5}{3}}$=$\frac{3}{5}$,
∴AM=$\frac{3}{8}$AF=$\frac{3\sqrt{2}}{4}$,
∵AD∥BF,
∴△AND∽△FNB,
∴$\frac{AN}{FN}$=$\frac{AD}{BF}$=$\frac{3}{2}$,
∴AN=$\frac{3}{5}$AF=$\frac{6\sqrt{2}}{5}$,
∴MN=AN-AM=$\frac{6\sqrt{2}}{5}$-$\frac{3\sqrt{2}}{4}$=$\frac{9\sqrt{2}}{20}$,
故选B.

点评 本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图在△ABC中,AB=5,BC=7,EF是的中位线,则EF的长度范围是1<EF<6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在菱形ABCD中,P是对角线AC上的一点,且PA=PD,⊙O为△APD的外接圆,若AC=8,sin∠DAC=$\frac{1}{2}$,则⊙的半径为$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,抛物线y=mx2+4mx-5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=$\frac{\sqrt{3}}{3}$x相交于点E,与x轴相交于点D,点P在直线y=$\frac{\sqrt{3}}{3}$x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.
(1)如图①所示,若抛物线顶点的纵坐标为6$\sqrt{3}$,求抛物线的解析式;
(2)求A、B两点的坐标;
(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=$\frac{\sqrt{3}}{3}$x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧$\widehat{BC}$的长为$\frac{4π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在平面直角坐标系中,一条直线与反比例函数y=$\frac{8}{x}$(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=$\frac{2}{x}$(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知四边形ABCD内接于⊙O,A是$\widehat{BDC}$的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且$\widehat{BF}=\widehat{AD}$.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.-3的绝对值是(  )
A.$\frac{1}{3}$B.-3C.3D.±3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.
问题解决:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.
(1)求证:AD∥BF;
(2)若AD=2,求AB的长.

查看答案和解析>>

同步练习册答案