精英家教网 > 初中数学 > 题目详情

【题目】如图,直线yx分别与双曲线ym0x0),双曲线yn0x0)交于点A和点B,且,将直线yx向左平移6个单位长度后,与双曲线y 交于点C,若SABC4,则的值为_____mn的值为_____

【答案】 100

【解析】

先求出直线yx向左平移6个单位长度后的解析式为yx+4,那么直线yx+4y轴于E04),作EFOBF.根据互相垂直的两直线斜率之积为﹣1得出直线EF的解析式为y=﹣x+4,再求出F点的坐标,根据勾股定理求得EF,根据SABC4,求出AB,那么根据,求得OA,进而求出AB两点坐标,求出mn即可解决问题.

解:直线yx向左平移6个单位长度后的解析式为yx+6),即yx+4

∴直线yx+4y轴于E04),作EFOBF

可得直线EF的解析式为y=﹣x+4

,解得 ,即

EF

SABC4

ABEF4

AB

OAAB

A32),B5),

m6n

mn100

故答案是:100

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.

(1)求证:

(2)设EF=x,EH=y,写出y与x之间的函数表达式;

(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点PA出发,沿A→B→C→D的路线运动,到D停止;点QD点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.

(1)求出a值;

(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;

(3)P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂准备购买AB两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.

1)求AB两种零件的单价;

2)根据需要,工厂准备购买AB两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°30°,已知楼高CD10m,求塔的高度.(sin30°0.50cos30°≈0.87tan30°≈0.58)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由我国完全自主设计、自主建造的首艘国产航母于20185月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC60°,∠C45°,点DE分别为边ABAC上的点,且DEBCBDDE2CEBC.动点P从点B出发,以每秒1个单位长度的速度沿BDEC匀速运动,运动到点C时停止.过点PPQBC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4AD3,点NBC边上的一点,且BNnn0),动点P从点A出发,以每秒1个单位长的速度沿AB边向点B运动,连接NP,作射线PMNPAD于点M,设点P运动的时间是t秒(t0).

1)当点M与点A重合时,t等于多少秒,当点M与点D重合时,n等于多少(用含字母t的代数式表示)

2)若n2,则

①在点P运动过程中,点M是否可以到达线段AD的延长线上?通过计算说明理由;

②连接ND,当t为何值时,NDPM

3)过点NNKAB,交AD于点K,若在点P运动过程中,点K与点M不会重合,直接写出n的取值范围.

查看答案和解析>>

同步练习册答案