精英家教网 > 初中数学 > 题目详情
如图(1),直线y=kx-k2(k为常数,且k>0)与y轴交于点C,与抛物线y=ax2有唯一公共点B,点B在x轴上的正投影为点E,已知点D(0,4).
(1)求抛物线的解析式;
(2)是否存在实数k,使经过D,O,E三点的圆与抛物线的交点恰好为B?若存在,请求出时k的值;若不存在,请说明理由.
(3)如图(2),连接CE,已知点F(0,1),直线FA与CE相交于点M,不论k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF两个等式中有一个恒成立.请判断哪一个恒成立,并证明这个成立的结论.
(1)∵直线y=kx-k2与抛物线y=ax2有唯一公共点B,
∴kx-k2=ax2,即ax2-kx+k2=0有两个相等的实数根,
∴(-k)2-4ak2=0,而k>0,
∴a=
1
4

∴y=
1
4
x2

(2)存在实数k,使得经过D、O、E三点的圆与抛物线的交点刚好为点B,
y=kx-k2
y=
1
4
x2
的解为
x=2k
y=k2

∴点B的坐标为(2k,k2),
又∵点B在x轴上的正投影为点E,连接BE,
则BE⊥x轴于E,
∴E(2k,0),
∴DE⊥OB,DF=EF=OF,
连接OB、DE,则OB、DE均为过点D、0、E三点的圆的直径,
∴Rt△ODE≌Rt△EBO(HL),
∴BE=DO,
∵D(0,4),
∴k2=4,
∴k=2(k>0);

(3)结论②∠EAM=∠ACF成立,
对y=kx-k2,令y=0,得x=k,
∴A(k,0),
∴OA=k,
令x=0,得y=-k2
∴C(0,-k2),
∴OC=k2
又∵F(0,1),
∴OF=1,
∴OA2=OF•OC,
OA
OF
=
OC
OA

又∵∠FOA=∠AOC=90°,
∴△AFO△CAO,
∴∠FAO=∠ACF,而∠FAO=∠EAM,
∴∠EAM=∠ACF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;
(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;
(2)如图,连接AC,在抛物线上是否存在点P,使∠ACD+∠ACP=45°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,
①点E在运动过程中四边形OEAF的面积是否发生变化,并说明理由;
②当EF分四边形OEAF的面积为1:2两部分时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如如在直角坐标系中,二次函数y=x2-4x+中的顶点是C,与x轴相交于A,B两点(A在B的左边).
(1)若点B的横坐标xB满足5<xB<c,求中的取值范围;
(2)若tan∠ACB=
4
,求中的值;
(十)当中=c时,点D,E同时从点B出发,分别向左、向右在抛物线它移动,点D,E在x轴它的正投影分别为M,N,设BM=m(m<cB),BN=n,当m,n满足怎样的等量关系时,△cDE的内心在x轴它?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案