精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知抛物线y=ax2+bx+c的顶点坐标为E(1,0),与y轴的交点坐标为(0,1).
(1)求该抛物线的函数关系式.
(2)A、B是x轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD⊥x轴交抛物线于D,过B作BC⊥x轴交抛物线于C.设A点的坐标为(t,0),四边形ABCD的面积为S.
①求S与t之间的函数关系式.
②求四边形ABCD的最小面积,此时四边形ABCD是什么四边形?
③当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△PAE的周长最小,若存在,请求出点P的坐标及这时△PAE的周长;若不存在,说明理由.
分析:(1)先设抛物线的顶点式,然后把点(0,1)代入抛物线,可以求出抛物线的解析式.(2)①因为点A的坐标为(t,0),AB=4,所以点B的坐标为(t+4,0),分别把A,B两点的坐标代入抛物线得到C,D两点的坐标,得到线段AD和BC的长,可以用含t的式子表示直角梯形ABCD的面积.②根据①得到S关于t的二次函数,利用二次函数的性质,可以求出面积最小时t的值,并确定此时四边形的形状.③当四边形ABCD的面积最小时,ABCD是正方形,点A点C关于BD对称,根据两点之间线段最短,得到CE与BD的交点就是点P,然后求出△PAE的周长.
解答:解:(1)设抛物线的解析式为:y=a(x-1)2,把点(0,1)代入抛物线有:1=a(0-1)2,得:a=1.
所以抛物线的解析式为:y=(x-1)2

(2)①∵A(t,0),AB=4,且A在B的左边,∴B(t+4,0),
当x=t时,y=(t-1)2=t2-2t+1,∴D(t,t2-2t+1).
当x=t+4时,y=(t+4-1)2=t2+6t+9,∴C(t+4,t2+6t+9).
∵四边形ABCD是直角梯形,
∴S=
1
2
(AD+BC)×AB=
1
2
(t2-2t+1+t2+6t+9)×4=4t2+8t+20.
所以:S=4t2+8t+20.
②当t=-
8
2×4
=-1时,四边形ABCD的面积最小,
此时,AB=4,AD=t2-2t+1=4,BC=t2+6t+9=4,且∠BAD=∠ABC=90°,
所以ABCD是正方形.
③因为ABCD是正方形,所以点A点C关于BD对称,直线CE与BD的交点就是点P.
此时:A(-1,0),B(3,0),C(3,4),D(-1,4),E(1,0).
可以求出直线CE的解析式:y=2x-2.
BD的解析式:y=-x+3.
联立得:
y=2x-2
y=-x+3
,∴
x=
5
3
y=
4
3

所以点P的坐标为(
5
3
4
3

此时△PAE的周长=CE+AE=
42+22
+2=2+2
5
点评:本题考查的是二次函数的综合题,(1)利用顶点式求出抛物线的解析式.(2)①结合二次函数的图形,理解四边形ABCD是直角梯形,利用梯形的面积公式求出S关于t的函数.②利用①中求出的二次函数的性质,得到四边形面积最小时t的值,并确定ABCD的形状.③利用②的结论得到A,B,C,D的坐标,再根据两点之间线段最短,求出点P的坐标和△PAE的周长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案