¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãA1£¬O£¬A11ÔÚÒ»ÌõÖ±ÏßÉÏ£¬×ÔOµã˳´ÎÒý9ÌõÉäÏßOA2£¬OA3£¬OA4£¬OA5£¬OA6£¬¡­£¬OA10£®
£¨1£©Í¼ÖÐÓжàÉÙ¸öСÓÚƽ½ÇµÄ½Ç£¿
£¨2£©´ÓÉäÏßOA2¿ªÊ¼°´Ë³Ê±Õë·½ÏòÒÀ´ÎÔÚÉäÏßOA2£¬OA3£¬OA4£¬OA5£¬OA6£¬¡­OA10ÉÏд³öÊý×Ö1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬¡­
¢ÙÊý×Ö23ÔÚÄÄÒ»ÌõÉäÏßÉÏ£¿
¢Úд³öÉäÏßOA4ÉÏÊý×ÖµÄÅÅÁйæÂÉ£»
¢ÛÊý×Ö2008ÔÚÄÄÌõÉäÏßÉÏ£¿£¨Ð´³öÄãµÄÍÆÀí¹ý³Ì£©
£¨3£©Èô¡ÏA30A2-¡ÏA2OA1=¡ÏA4OA3-¡ÏA3OA2=¡­=¡ÏA11OA10-¡ÏA10OA9=2¡ã£¬Çó¡ÏA2OA1µÄ¶ÈÊý£®
·ÖÎö£º£¨1£©´ÓÒ»¸öµãÒýNÌõÉäÏߣ¬ËùÓеĽǸöÊýΪ
N(N-1)
2
£¬±¾ÌâÖÐÊÇÇóСÓÚƽ½ÇµÄ½Ç£¬ËùÒԽǵĸöÊý
11¡Á10
2
-1=54¸ö½Ç£»
£¨2£©×ªµÚһȦʱ£¬OA2ÉϵÄÊý×ÖΪ1£¬×ªµÚ¶þȦʱ£¬OA2ÉϵÄÊý×ÖΪ12£¬×ªµÚÈýȦʱ£¬OA2ÉϵÄÊý×ÖΪ23£¬¡­×ªµÚNȦʱ£¬OA2ÉϵÄÊý×ÖΪ1+11£¨N-1£©£¬ÒԴ˹æÂÉÇó½â£»
£¨3£©Éè³öÊʵ±µÄ²ÎÊý½¨Á¢·½³ÌÇó½â£®
½â´ð£º½â£º£¨1£©½ÇµÄ¸öÊý
11¡Á10
2
-1=54£»

£¨2£©¢ÙתµÚһȦʱ£¬OA2ÉϵÄÊý×ÖΪ1£¬×ªµÚ¶þȦʱ£¬OA2ÉϵÄÊý×ÖΪ10£¬×ªµÚÈýȦʱ£¬OA2ÉϵÄÊý×ÖΪ19£»
¡àÊý×Ö23ÔÚOA6ÉÏ£»
¢ÚתµÚһȦʱ£¬OA4ÉϵÄÊý×ÖΪ3£¬×ªµÚ¶þȦʱ£¬OA4ÉϵÄÊý×ÖΪ14£¬×ªµÚһȦʱ£¬OA4ÉϵÄÊý×ÖΪ25£¬¡­×ªµÚNȦʱ£¬OA4ÉϵÄÊý×ÖΪ3+11£¨N-1£©£»
¡àOA4ÉÏÊý×ÖµÄÅÅÁйæÂÉΪ3+11£¨N-1£©£»
¢ÛתµÚһȦʱ£¬OA2ÉϵÄÊý×ÖΪ1£¬×ªµÚ¶þȦʱ£¬OA2ÉϵÄÊý×ÖΪ12£¬×ªµÚÈýȦʱ£¬OA2ÉϵÄÊý×ÖΪ23£¬¡­×ªµÚNȦʱ£¬OA2ÉϵÄÊý×ÖΪ1+11£¨N-1£©£¬×ªµÚ183Ȧʱ£¬OA2ÉϵÄÊý×ÖΪ1+11£¨183-1£©=2003£¬2008-2003=5£»
¡à2008ÔÚOA7ÉÏ£®

£¨3£©Éè¡ÏA2OA1=x¡ã£¬
Ôò¡ÏA3OA2=x+2£¬¡ÏA4OA3=x+2¡Á2£¬¡ÏA5OA4=x+3¡Á2£¬¡­£¬¡ÏA11OA10=x+9¡Á2£¬
ÓÉ¡ÏA2OA1+¡ÏA3OA2+¡ÏA4OA3+¡­+¡ÏA11OA10=180¡ã£¬
¿ÉÁз½³Ì£¬ÇóµÃx=9£¬ÓÚÊÇ¡ÏA2OA1=9¡ã£®
¡à¡ÏA2OA1µÄ¶ÈÊýΪ9¡ã£®
µãÆÀ£º£¨1£©ÖÐ×¢ÒâÒªÔÚ
N(N-1)
2
¼õÈ¥1£¬ÒòΪÕâ¸ö½ÇÊýÒÑÀ¨ÁËÒ»¸öƽ½Ç£®
£¨2£©×ªµÚNȦʱ£¬OA2ÉϵÄÊý×ÖΪ1+11£¨N-1£©£¬ÀûÓÃÁ˴˹æÂÉÇó½â£®
£¨3£©¹Ø¼üÒª´Ó¡°¡ÏA30A2-¡ÏA2OA1=¡ÏA4OA3-¡ÏA3OA2=¡­=¡ÏA11OA10-¡ÏA10OA9=2¡ã¡±·¢ÏÖ£¬½ÇµÄ¶ÈÊýºó¶¼±ÈÇ°Õ߶à2¡ã£¬ÔÙÀûÓáÏA2OA1+¡ÏA3OA2+¡ÏA4OA3+¡­+¡ÏA11OA10=180¡ãÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãA1¡¢A2£¬B1¡¢B2£¬C1¡¢C2·Ö±ðÊÇ¡÷ABCµÄ±ßBC¡¢CA¡¢ABµÄÈýµÈ·Öµã£¬Èô¡÷ABCµÄÖܳ¤ÎªL£¬ÔòÁù±ßÐÎA1A2B1B2C1C2µÄÖܳ¤Îª£¨¡¡¡¡£©
A¡¢
1
3
L
B¡¢3L
C¡¢2L
D¡¢
2
3
L

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Ì«Ô­¶þÄ££©Èçͼ£¬µãA1ÊÇ?ABCD¶Ô½ÇÏßACÉϵÄÒ»µã£¬½«¡÷ADCÑØ×ÅAC·½ÏòƽÒÆ£¬µãAÒƵ½µãA1ºóµÃµ½¡÷A1D1C1£®
£¨1£©ÔÚͼÖл­³öƽÒƺóµÄ¡÷A1D1C1£¬²¢Á¬½ÓAD1¡¢BC1£»
£¨2£©ÔÚ£¨1£©Öл­³öµÄͼÖУ¬³ýÁË¡÷ABC¡Õ¡÷C1D1A1¡Õ¡÷CDA»¹Óм¸¶ÔÈ«µÈµÄÈý½ÇÐΣ¨²»ÄÜÁíÍâÌí¼Ó¸¨ÖúÏß»òÎÄ×Ö£©£¬ÇëÑ¡ÔñÆäÖеÄÒ»¶Ô¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãA1¡¢A2¡¢A3ÔÚxÖáÉÏ£¬ÇÒOA1=A1A2=A2A3£¬·Ö±ð¹ýµãA1¡¢A2¡¢A3×÷yÖáµÄƽÐÐÏߣ¬Óë·´±ÈÀýº¯Êýy=
4
x
(x£¾0)
µÄͼÏó·Ö±ð½»ÓÚµãB1¡¢B2¡¢B3£¬·Ö±ð¹ýµãB1¡¢B2¡¢B3×÷xÖáµÄƽÐÐÏߣ¬·Ö±ðÓëyÖá½»ÓÚµãC1¡¢C2¡¢C3£¬Á¬½áOB1¡¢OB2¡¢OB3£¬ÄÇôͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍΪ
2
13
18
2
13
18
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãA1¡¢A2¡¢A3¡¢¡­£¬µãB1¡¢B2¡¢B3¡¢¡­£¬·Ö±ðÔÚÉäÏßOM¡¢ONÉÏ£¬A1B1¡ÎA2B2¡ÎA3B3¡ÎA4B4¡Î¡­£®Èç¹ûA1B1=2£¬A1A2=2OA1£¬A2A3=3OA1£¬A3A4=4OA1£¬¡­£®ÄÇôA2B2=
6
6
£¬AnBn=
n£¨n+1£©
n£¨n+1£©
£®£¨nΪÕýÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄϾ©¶þÄ££©Èçͼ£¬µãA1¡¢A2¡¢A3¡¢A4¡¢A5ÔÚ¡ÑOÉÏ£¬ÇÒ
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1
£¬B¡¢C·Ö±ðÊÇA1A2¡¢A2A3ÉÏÁ½µã£¬A1B=A2C£¬A5BÓëA1CÏཻÓÚµãD£¬Ôò¡ÏA5DCµÄ¶ÈÊýΪ
108¡ã
108¡ã
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸