精英家教网 > 初中数学 > 题目详情
已知:如图,在等边三角形ABC的三边上,分别取点D,E,F使AD=BE=CF.
求证:△DEF是等边三角形.
分析:由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=DE,即可证得:△DEF是等边三角形.
解答:证明:∵△ABC是等边三角形,
∴AB=BC=AC,
∵AD=BE=CF,
∴AF=BD,
在△ADF和△BED中,
AD=BE
∠A=∠B
AF=BD

∴△ADF≌△BED(SAS),
∴DF=DE,
同理DE=EF,
∴DE=DF=EF.
∴△DEF是等边三角形.
点评:此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,在等边三角形ABC,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在等边三角形ABC,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是(  )
A.5B.4C.3D.2
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年上海市松江区中考数学三模试卷(解析版) 题型:解答题

(2010•松江区三模)已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.
(1)求证:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD经过怎样的图形运动后,能与△ACE重合?请写出你的具体方案.(可以选择的图形运动是指:平移、旋转、翻折)

查看答案和解析>>

科目:初中数学 来源:2010年上海市初中数学(初三)教学质量抽样分析试卷(解析版) 题型:解答题

(2010•松江区三模)已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.
(1)求证:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD经过怎样的图形运动后,能与△ACE重合?请写出你的具体方案.(可以选择的图形运动是指:平移、旋转、翻折)

查看答案和解析>>

同步练习册答案