精英家教网 > 初中数学 > 题目详情
19.已知抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,点B的坐标为(-1,0),过x轴上一点E作EG⊥x轴交抛物线于点G,交直线AC于点F.
(1)直接写出点C的坐标(0,4);
(2)如图,当点A在x轴的正半轴上,且直线EG为抛物线的对称轴时,过C作CH⊥GE交GE于H点,若$\frac{FH}{FE}$=$\frac{3}{5}$,求抛物线的表达式;
(3)连接CG,当△CGF为等腰直角三角形时,求点E的坐标.

分析 (1)直接利用坐标轴上点的坐标特点即可确定;
(2)先确定出点E坐标,即可得出CH,AE,最后用相似三角形得出的比例式列出方程求解即可;
(3)先判断出∠AFE≠90°,再分两种情况利用等腰直角三角形的性质列出方程或方程组求解即可.

解答 解:(1)令x=0,
∴y=4,
∴C(0,4),
故答案为:0,4;
(2)∵抛物线y=ax2+bx+4与x轴交于A,B(-1,0)两点,
∴a-b+4=0,
∴b=a+4,
∴抛物线的解析式为y=ax2+(a+4)x+4=(ax+4)(x+1)
∴A(-$\frac{4}{a}$,0),对称轴为x=-$\frac{b}{2a}$=-$\frac{a+4}{2a}$,
∵直线EG为抛物线的对称轴,
∴E(-$\frac{a+4}{2a}$,0),
∴OE=|-$\frac{a+4}{2a}$|,
∵EG⊥x,CH⊥GE,
∴CH∥AE,四边形OCHE是矩形,
∴CH=OE=|-$\frac{a+4}{2a}$|,AE=BE=|-$\frac{a+4}{2a}$+1|,
∵CH∥AE,
∴△CHF∽△AEF,
∴$\frac{CH}{AE}=\frac{FH}{FE}$,
∵$\frac{FH}{FE}$=$\frac{3}{5}$,
∴$\frac{|-\frac{a+4}{2a}|}{|-\frac{a+4}{2a}+1|}$=$\frac{3}{5}$,
∴a=-1或a=-16,
∴b=a+4=3或-12,
∴抛物线解析式为y=-x2+3x+4或y=-16x2-12x+4.
(3)∵A(-$\frac{4}{a}$,0),C(0,4),
∴直线AC解析式为y=ax+4,
设E(m,0),
∴F(m,am+4),G(m,am2+(a+4)m+4);
∵△CGF为等腰直角三角形,
∵EG⊥x轴,
∴∠AFE≠90°,
∴①当∠FCG=90°时,
如图,∴FG=2CH=2OE,点H是FG的中点,且纵坐标和点C的相同,
∴|am2+4m|=|m|①,$\frac{am+4+a{m}^{2}+am+4m+4}{2}$=4②,
联立①②得,a=-$\frac{1}{2}$,m=6或a=$\frac{1}{2}$,m=-6,
∴E(6,0)或(-6,0),
②当∠CGF=90°时,CG=FG,
∵FG⊥x轴,
∴CG∥x轴,
∴G的纵坐标为4,
∴G(-$\frac{a+4}{a}$,4),F(-$\frac{a+4}{a}$,$\frac{4}{a+4}$),E(-$\frac{a+4}{a}$,0),
∴CG=|$\frac{a+4}{4}$|,FG=|4-$\frac{4}{a+4}$|,
∴|$\frac{a+4}{4}$|=|4-$\frac{4}{a+4}$|,
∴a=4+4$\sqrt{3}$或a=4-4$\sqrt{3}$,或a=-12+4$\sqrt{5}$或a=-12-4$\sqrt{5}$,
∴-$\frac{a+4}{a}$=-$\frac{1+\sqrt{3}}{2}$或-$\frac{a+4}{a}$=-$\frac{1-\sqrt{3}}{2}$或-$\frac{a+4}{a}$=$\frac{5\sqrt{5}-11}{4}$   或-$\frac{a+4}{a}$=-$\frac{1+\sqrt{5}}{4}$,
∴E(-$\frac{1+\sqrt{3}}{2}$,0)或(-$\frac{1-\sqrt{3}}{2}$,0)或( $\frac{5\sqrt{5}-11}{4}$,0)或(-$\frac{1+\sqrt{5}}{4}$,0).
即:满足条件的E的坐标为E(6,0)或(-6,0)或(-$\frac{1+\sqrt{3}}{2}$,0)或(-$\frac{1-\sqrt{3}}{2}$,0)或( $\frac{5\sqrt{5}-11}{4}$,0)或(-$\frac{1+\sqrt{5}}{4}$,0).

点评 此题是二次函数综合题,主要考查了坐标轴上点的特点,相似三角形的性质,等腰直角三角形的性质解方程或方程组,是一道中等难度的试题,但计算量比较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.若存在3个互不相同的实数a,b,c,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t,则t=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图1,点A在半圆O上运动(不与半圆的两个端点重合),以AC为对角线作矩形ABCD,使点D落在直径CE上,CE=8.将△ADC沿AC折叠,得到△AD'C.

(1)求证:AD'是半圆O的切线;
(2)如图2,当AB与CD'的交点F恰好在半圆O上时,连接OA.
①求证:四边形AOCF是菱形;
②求四边形AOCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.
(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角;
(2)如图3,C是函数y=$\frac{3}{x}$(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,则EC的长为6 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,A、B(0,2)两点关于x轴对称,点P为x轴正半轴上任意一点.点C在线段PB上,AC交x轴于点M,CD平分∠ACB交x轴于点D.
(1)如图,若CB=CM,连BD.求证:BD=MD;
(2)在(1)的条件下,连接AD,若点N在线段AM上(不含A、M点)运动,且NE⊥PD于E,NF⊥AD于F.则在N点运动的过程中,NE+NF的值是否发生变化?若不变,请证明求值;若变化,请求出变化范围.
(3)若点C在线段PB(不含P、B两点)运动,其余条件不变,OH∥CD分别交AC、PB于G,H,在C点的运动过程中,$\frac{AC-BH}{CG}$的值是否发生变化?若不变,证明并求值;若变化,请求出变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.根据所给材料完成第(2)、第(3)两小题.
(1)基础知识:如图a,正方形ABCD的一个顶点B在直线EF上,且AE⊥EF,CF⊥EF,显然,我们可以证明△ABE≌△BCF.
(2)实践运用:如图b,锐角△ABC的顶点C是直线l上方的一个动点,运动过程中始终保持∠ACB=45°,A、B点在直线l上,现分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.请问在C点的运动过程中,线段EM+FN的值是否改变,说明你的理由.
(3)变化拓展:当图b中的AB=1,其他条件不变时,随着C点的变化,△ABC的面积也随之变化.请直接写出△ABC面积的最大值为$\frac{\sqrt{2}+1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线顶点坐标为点C(2,8),交x轴于点A (6,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q (x,0)是线段OA上的一动点,过Q点作x轴的垂线,交抛物线于P点,交直线BA于D点,求PD与x之间的函数关系式并求出PD的最大值;
(3)x轴上是否存在一点Q,过点Q作x轴的垂线,交抛物线于P点,交直线BA于D点,使以PD为直径的圆与y轴相切?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知如图,△ABC为等边三角形,AB=6cm,D点在BC上,且∠ADE=60°,$\frac{DB}{DC}$=$\frac{1}{2}$,求AE的长.

查看答案和解析>>

同步练习册答案