精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.

(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3SEDF , 求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE= ,求 的值.

【答案】
(1)

解:如图①,

∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,

∴EF⊥AB,△AEF≌△DEF,

∴SAEF≌SDEF

∵S四边形ECBF=3SEDF

∴SABC=4SAEF

在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,

∴AB= =5,

∵∠EAF=∠BAC,

∴Rt△AEF∽Rt△ABC,

=( 2,即( 2=

∴AE=


(2)

解:①四边形AEMF为菱形.理由如下:

如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,

∴AE=EM,AF=MF,∠AFE=∠MFE,

∵MF∥AC,

∴∠AEF=∠MFE,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=EM=MF=AF,

∴四边形AEMF为菱形;

②连结AM交EF于点O,如图②,

设AE=x,则EM=x,CE=4﹣x,

∵四边形AEMF为菱形,

∴EM∥AB,

∴△CME∽△CBA,

,即 = = ,解得x= ,CM=

在Rt△ACM中,AM= = =

∵S菱形AEMF= EFAM=AECM,

∴EF=2× =


(3)

解:如图③,

作FH⊥BC于H,

∵EC∥FH,

∴△NCE∽△NFH,

∴CN:NH=CE:FH,即1:NH= :FH,

∴FH:NH=4:7,

设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,

∵FH∥AC,

∴△BFH∽△BAC,

∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=

∴FH=4x= ,BH=4﹣7x=

在Rt△BFH中,BF= =2,

∴AF=AB﹣BF=5﹣2=3,

=


【解析】本题考查了三角形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则SAEF≌SDEF , 则易得SABC=4SAEF , 再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到 =( 2 , 再利用勾股定理求出AB即可得到AE的长;(2)①通过证明四条边相等判断四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,先证明△CME∽△CBA得到 = = ,解出x后计算出CM= ,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF;(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x= ,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出 的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形EFBC均为正方形,点DEC上.如果线段AB的长为5,则△BDF的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】看图填空:

(1)过点________和点_______作直线;

(2)延长线段_________________,且使________=_________

(3)过点_________作直线_______的垂线;

(4)作射线_______,使_____平分________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F
(1)求证:
(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为(

A.2
B.3
C.
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一节”期间,小明一家自驾游去了离家240千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

(1)求出y(千米)与x(小时)之间的函数表达式;
(2)他们出发2小时时,离目的地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1S2S3.若S1+S2+S315,则S2的值是_____

查看答案和解析>>

同步练习册答案