A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ①②③④ |
分析 ①根据平行线性质求出∠ABC=∠ADC,得出平行四边形ABCD,即可推出AB∥CD;
②根据等腰三角形性质求出DE⊥AB,然后根据平行线的性质即可推出DE⊥CD;
③由∠A=∠ABD,四边形ABCD是平行四边形,可得AD=BD=BC,进而由等边对等角可得:∠BDC=∠BCD,然后由AD∥BC,可得∠ADB=∠DBC,然后由角的和差计算及等量代换可得:∠ADC-∠DCE=∠DBC+∠BCF,然后根据外角的性质可得:∠DFC=∠DBC+BCF,进而可得:∠DFC=∠ADC-∠DCE;
④根据等底等高的三角形面积相等即可推出S△EDF=S△BCF.
解答 解:∵AD∥BC,
∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠A=∠BCD,
∴∠ABC=∠ADC,
∵∠A=∠BCD,
∴四边形ABCD是平行四边形,
∴AB∥CD,
∵∠A=∠ABD,DE平分∠ADB,
∴DE⊥AB,
∴DE⊥CD,
∵∠A=∠ABD,四边形ABCD是平行四边形,
∴AD=BD=BC,
∴∠BDC=∠BCD,
∵AD∥BC,
∴∠ADB=∠DBC,
∵∠ADC=∠ADB+∠BDC,
∴∠ADC=∠DBC+∠BCD,
∴∠ADC-∠DCE=∠DBC+∠BCD-∠DCE=∠DBC+∠BCF,
∵∠DFC=∠DBC+BCF,
∴∠DFC=∠ADC-∠DCE;
∵AB∥CD,
∴△BED的边BE上的高和△EBC的边BE上的高相等,
∴由三角形面积公式得:S△BED=S△EBC,
都减去△EFB的面积得:S△EDF=S△BCF,
∴①②③④都正确,
故选D.
点评 本题考查了平行四边形的性质和判定,平行线性质,等腰三角形的性质,三角形的面积的应用,关键是推出AB∥CD.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}-1$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com