精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标系中,以点A(
3
,0)为圆心,以2
3
为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.
(1)求D点坐标.
(2)若B、C、D三点在抛物线y=ax2+bx+c上,求这个抛物线的解析式.
(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.
分析:(1)连接AD,构造直角三角形解答,在直角△ADO中,OA=
3
,AD=2
3
,根据勾股定理就可以求出AD的长,求出D的坐标.
(2)求出B、C、D的坐标,用待定系数法设出一般式解答;
(3)求出抛物线交点坐标,连接AP,则△APM是直角三角形,且AP等于圆的半径,根据三角函数就可以求出AM的长,已知OA,就可以得到OM,则M点的坐标可以求出;同理可以在直角△BNM中,根据三角函数求出BN的长,求出N的坐标,根据待定系数法就可以求出直线MN的解析式.将交点坐标代入直线解析式验证即可.
解答:精英家教网解:(1)连接AD,得
OA=
3
,AD=2
3

∴OD=
AD2-OA2
=
(2
3
)
2
-(
3
)
2
=3
∴D(0,-3).

(2)由B(-
3
,0),C(3
3
,0),D(0,-3)三点在抛物线y=ax2+bx+c上,
0=3a-
3
b+c
0=27a+3
3
b+c
-3=c

解得
a=
1
3
b=-
2
3
3
c=-3

∴抛物线为y=
1
3
x2-
2
3
3
x-3


精英家教网(3)连接AP,在Rt△APM中,∠PMA=30°,AP=2
3

∴AM=4
3

∴M(5
3
,0)
ON=MO•tan30°=5
3
3
3
=5

∴N(0,-5)
设直线MN的解析式为y=kx+b,由于点M(5
3
,0)和N(0,-5)在直线MN上,
5
3
k+b=0
b=-5

解得
b=-5
k=
3
3

∴直线MN的解析式为y=
3
3
x-5

∵抛物线的顶点坐标为(
3
,-4),
当x=
3
时,y=
3
3
x-5=
3
3
×
3
-5=-4

∴点(
3
,-4)在直线y=
3
3
x-5
上,
即直线MN经过抛物线的顶点.
点评:此题将用待定系数法求函数解析式和圆以及存在性问题相结合,考查了同学们的实际应用能力,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案