精英家教网 > 初中数学 > 题目详情
如图,将长方形纸片ABCD沿对角线AC折叠,使点B落在点B′处,CB′交AD于点M.试说明△AMC的形状,并说明理由.
分析:由将长方形纸片ABCD沿对角线AC折叠,根据长方形的性质与折叠的性质,易得∠MAC=∠ACM=∠ACB,继而可证得△AMC是等腰三角形.
解答:解:△AMC是等腰三角形.
理由:∵四边形ABCD是长方形,
∴AD∥BC,
∴∠MAC=∠ACB,
由折叠的性质可得:∠ACB=∠ACM,
∴∠MAC=∠ACM,
∴AM=CM,
即△AMC是等腰三角形.
点评:此题考查了等腰三角形的判定以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,再将另一角折叠,使顶点B落在EA′上的B′点处,折痕为EG,则∠FEG等于
90°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将长方形纸片的一角折叠,使顶点A落在点A′处,BC为折痕,若BE是∠A′BD的角平分线,求∠CBE的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将长方形纸片的一角斜折,使顶点A落在A′处,EF为折痕;再将另一角斜折,使顶点B落在EA′上B′点处,折痕为EG;观察并估计∠FEG=
90°
90°
.再测量进行验证.你能说出理由吗?若被折角∠AEF=30°,求∠A′EB的度数.

查看答案和解析>>

同步练习册答案