精英家教网 > 初中数学 > 题目详情
某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.
(1)写出y与x的函数关系式及自变量x的取值范围;
(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?
(1) y=800-10x(50≤x≤80);(2)40,60.

试题分析:(1)根据题意可得y=500-10(x-30).
(2)令y=8000,求出x的实际取值.
试题解析:(1)由题意得:
y=500-10(x-30)=800-10x(50≤x≤80)
(2)由题意得:-10x2+1000x-16000=8000
10x2-1000x+24000=0
x2-100x+2400=0
即(x-60)(x-40)=0
x1=60,x2=40
考点: 二次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点,且与轴交于点、点,若

(1)求此抛物线的解析式;
(2)若抛物线的顶点为,点是线段上一动点(不与点重合),,射线与线段交于点,当△为等腰三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,
薄板的边长(cm)
20
30
出厂价(元/张)
50
70
⑴求一张薄板的出厂价与边长之间满足的函数关系式;
⑵已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长这之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在平面直角坐标系内,以点C(1,1)为圆心,2为半径作圆,交x轴于A、B两点,开口向下的抛物线经过A、B两点,且其顶点P在⊙C上。

(1)写出A、B两点的坐标;
(2)确定此抛物线的解析式;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9).
(1)求该二次函数的解析式并写出其对称轴;
(2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为(  )
A.a>bB.a<bC.a=bD.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为二次函数的图象上的三点,则的大小关系是    .

查看答案和解析>>

同步练习册答案