精英家教网 > 初中数学 > 题目详情
17.求二次函数y=x2-4x+3的顶点坐标,并在所给坐标系中画出它的图象.

分析 把抛物线解析式化为顶点式,可求得其顶点坐标,再利用描点法可画出其函数图象.

解答 解:
∵y=x2-4x+3=(x-2)2-1,
∴顶点坐标 为(2,-1),
其图象如图所示

点评 本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):
+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭哪个方向?距岗亭多远?
(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,甲从A点出发向北偏东60°方向走到点C,乙从点A出发向南偏西25°方向走到点B,则∠BAC的度数是145°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,在以O为原点的直角坐标系中,抛物线的顶点为A (-1,-4),且经过点B(-2,-3),与x轴分别交于C、D两点.

(1)求直线OB以及该抛物线相应的函数表达式;
(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;
(3)如图2,过点A的直线交x轴于点E,且AE∥y轴,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G两点.当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在实数-$\sqrt{2}$,$\sqrt{2}$-1,$\sqrt{8}$,$\frac{π}{3}$,$\frac{22}{7}$中,无理数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:$\frac{2}{x-3}$=$\frac{3}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:-12-($\frac{1}{2}$-$\frac{2}{3}$)÷$\frac{1}{3}$×[-2+(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m-4|+(n-8)2=0.

(1)求线段AB,CD的长;
(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;
(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在那一个时间段内.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,AD为△ABC的高,AE为△ABC外接圆的直径,且AD=$\frac{1}{2}$AE=2$\sqrt{3}$,AB:AC=2:3,求sinB的值.

查看答案和解析>>

同步练习册答案