精英家教网 > 初中数学 > 题目详情
14.如图,AB是圆O的一条直径,弦CD垂直于AB,垂足为点G、E是劣弧BD上一点,点E处的切线与CD的延长线交于点P,连接AE,交CD于点F.
(1)求证:PE=PF
(2)已知AG=4,AF=5,EF=25,求圆O的直径.

分析 (1)如图1,连接OE,根据切线的性质得出∠PEO=90°,求出∠PEF=∠PFE,根据等腰三角形的判定得出即可;
(2)如图2,连接BE,根据相似三角形的判定得出△AGF∽△AEB,得出比例式,代入求出即可.

解答 (1)证明:如图1,连接OE,

∵EP是⊙O的切线,
∴∠PEO=90°,
∴∠OEA+∠PEF=90°,
∵AB⊥CD,
∴∠AGF=90°,
∴∠A+∠AFG=90°,
∵OE=OA,
∴∠OEA=∠OAE,
∴∠PEF=∠AFG,
∵∠EFP=∠AFG,
∴∠PEF=∠PFE,
∴PE=PF;

(2)解:如图2,连接BE,

∵AB为直径,
∴∠AEB=90°,
∵∠AGF=90°,
∴∠AGF=∠AEB,
∵∠A=∠A,
∴△AGF∽△AEB,
∴$\frac{AG}{AE}$=$\frac{AF}{AB}$,
∵AG=4,AF=5,EF=25,
∴$\frac{4}{5+25}$=$\frac{5}{AB}$,
∴AB=$\frac{75}{2}$,
即圆O的直径为$\frac{75}{2}$.

点评 本题考查了切线的性质,等腰三角形的性质和判定,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且AB=3,若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′处,则图中阴影部分的面积为6π-$\frac{27}{4}$(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了300名同学;
(2)条形统计图中,m=60,n=90;
(3)扇形统计图中,热词B所在扇形的圆心角的度数是72°;
(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:($\frac{1}{x-1}-1$)$÷\frac{{x}^{2}-4x+4}{x-1}$,其中x=$2+\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,点A(2,n)在反比例函数y=$\frac{3}{x}$的图象上,点B在第二象限,∠AOB=90°,∠OBA=30°,在小组合作学习中,四位同学发现并提出了以下四个结论,其中正确的有(  )个.
聪聪:在反比例函数y=$\frac{3}{x}$的图象上任取一个点P,作两坐标轴的垂线,则它们与两坐标轴围成的四边形面积为3;
明明:若直线OA的函数解析式为y=kx,则不等式$\frac{3}{x}$>kx的解集为0<x<2;
智智:过点B的反比例函数的解析式为y=-$\frac{3\sqrt{3}}{x}$;
慧慧:若点D(2+$\frac{3}{2}\sqrt{3}$,$\frac{3}{2}-2\sqrt{3}$),则以点A,O,B,D为顶点的四边形是一个中心对称图形.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.中央电视台2016年春晚支付宝互动集五福分大奖活动赢得几亿观众的参与,最终全国约79万观众平均分了2.15亿元大奖,把数2.15亿用科学记数法表示为(  )
A.2.15×107B.0.125×108C.2.15×108D.0.125×109

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一组数据1,3,2,5,8,7,1的中位数是(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,对△ABC,D是BC边上一点,连结AD,当$\frac{A{B}^{2}}{A{C}^{2}}$=$\frac{BD}{CD}$时,称AD为BC边上的“平方比线”.同理AB和AC边上也存在类似的“平方比线”.
(1)如图2,△ABC中,∠BAC=RT∠,AD⊥BC于D.
证明:AD为BC边上的“平方比线”;
(2)如图3,在平面直角坐标系中,B(-4,0),C(1,0),在y轴的正半轴上找一点A,使OA是△ABC中BC边上的“平方比线”.
①求出点A的坐标;
②如图4,以M($\frac{8}{3}$,0)为圆心,MA为半径作圆,在⊙M上任取一点P(与x轴交点除外)吗,连结PB,PC,PO.求证:PO始终是△PBC中BC边上的“平方比线”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解一元一次不等式组$\left\{\begin{array}{l}{1+x>-2}\\{\frac{2x-1}{3}≤1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案