精英家教网 > 初中数学 > 题目详情

【题目】某校九年级两个班,各选派名学生参加学校举行的汉字听写大赛预赛,各参赛选手的成绩如下:

班:

班:

通过整理,得到数据分析表如下:

班级

最高分

平均分

中位数

众数

方差

直接写出表中的值;

依据数据分析表,有人说:最高分在班,班的成绩比班好,但也有人说班的成绩要好,请给出两条支持班成绩好的理由.

【答案】(1)班平均分高于班;支持.

【解析】

(1)求出A班的平均分确定出a的值,求出A班的方差确定出c的值,求出B班的中位数确定出b的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持B成绩好的原因.

解:(1)A班的平均分=88+91+92+93+93+93+94+98+98+100)÷10=94;

A班的方差==12;

B班的中位数为(96+95)÷2=95.5,
故答案为:a=94b=95.5c=12;

班平均分高于班;②班的成绩集中在中上游,故支持班成绩好;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°.

(1)求证:DC是⊙O的切线.
(2)若BD=1cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O为坐标原点,二次函数y=x2+mx+2的图象与x轴的正半轴交于点A,与y轴的正半轴交交于点B,且OA:OB=1:2.设此二次函数图象的顶点为D.

(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1 , 顶点为D1 . 点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x-3, B表示的数为2x5,C表示的数为5x,则x=_______△ABC向右滚动,则点2016与点_____重合.(填A.B.C)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同。

1)求从袋中摸出一个球是黄球的概率;

2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出了多少个黑球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是多少?
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;;若在第n次操作后,剩下的长方形为正方形,则称原长方形为n阶奇异长方形.如图1,长方形ABCD中,若AB=2,BC=6,则称长方形ABCD2阶奇异长方形

(1)判断与操作:如图2,长方形ABCD长为10,宽为6,它是奇异长方形,请写出它是____阶奇异长方

形,并在图中画出裁剪线;

探究与计算:已知长方形ABCD的一边长为24,另一边长为a (a<24),且它是3阶奇异长方形,请画出所

有可能的长方形ABCD及裁剪线的示意图,并求出相应的a值.

查看答案和解析>>

同步练习册答案