精英家教网 > 初中数学 > 题目详情
如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.
(1)请判断四边形AOCD的形状,并说明理由:
(2)连接RD,请判断△ARD的形状,并说明理由:
(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.
分析:(1)首先由“四条边相等的四边形”可以判定四边形AOCD是菱形,然后由“有一内角为直角的菱形是正方形”推知菱形AOCD是正方形;
(2)利用△OAP≌△DAR(SAS),求出∠ADR=∠AOP=90°,即得△ARD是直角三角形;
(3)通过证△AOP≌△PEQ(AAS),得到AO=PE=2,PO=QE=m(m是大于0的常数),即Q(2+m,m)、C(2,0).所以把Q、C的坐标代入函数解析式,列出方程组,通过解方程组来求k的值.
解答:解:(1)如图①,由题意知:OA=OC=CD=AD=2
∴四边形OADC为菱形.
又∵∠AOC=90°
∴四边形OADC为正方形;

(2)如图①,∵四边形APQR是正方形,
∴AP=AR,∠PAR=90°,
∵四边形OADC是正方形,
∴∠OAD=90°,
∴∠OAP=∠DAR,
又∵OA=DA
∴在△OAP与△DAR中,
AO=AD
∠OAP=∠DAR
AP=AR

∴△OAP≌△DAR(SAS),
∴∠ADR=∠AOP=90°,即△ARD为直角三角形;


(3)如图②,过点Q作QE⊥x轴于E点.则∠QEC=∠AOP=90°
∵四边形APQR是正方形
∴AP=PQ,∠APQ=90°,
∴∠APO+∠EPQ=90°.
∵∠OAP+∠APO=90°,
∴∠OAP=∠EPQ,
∴在△AOP与△PEQ中,
∠AOP=∠PEQ
∠OAP=∠EPQ
AP=PQ

∴△AOP≌△PEQ(AAS),
∴AO=PE=2,PO=QE=m(m是大于0的常数),
∴Q(2+m,m)、C(2,0)
m=(2+m)k+b
0=2k+b

解得:
k=1
b=-2

∴k的值为1.
点评:本题考查了一次函数综合题,其中涉及到的知识点有:正方形的性质,全等三角形的判定与性质、以及用待定系数法求一次函数的解析式.解答(3)中的方程组时,要注意m的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.精英家教网

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(51):27.3 实践与探索(解析版) 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年广东省汕头市金平区初三数学联考试卷(解析版) 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市十三中中考数学模拟试卷(6月份)(解析版) 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2008•莆田)阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案