精英家教网 > 初中数学 > 题目详情
(2013•泸州)如图,在直角坐标系中,点A的坐标为(-2,0),点B的坐标为(1,-
3
),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)
分析:(1)直接将A、O、B三点坐标代入抛物线解析式的一般式,可求解析式;
(2)因为点A,O关于对称轴对称,连接AB交对称轴于C点,C点即为所求,求直线AB的解析式,再根据C点的横坐标值,求纵坐标;
(3)设P(x,y)(-2<x<0,y>0),用割补法可表示△PAB的面积,根据面积表达式再求取最大值时,x的值.
解答:解:(1)将A(-2,0),B(1,-
3
),O(0,0)三点的坐标代入y=ax2+bx+c(a≠0),
可得:
4a-2b+c=0
a+b+c=-
3
c=0

解得:
a=-
3
3
b=-
2
3
3
c=0

故所求抛物线解析式为y=-
3
3
x2-
2
3
3
x;

(2)存在.理由如下:
如答图①所示,
∵y=-
3
3
x2-
2
3
3
x=-
3
3
(x+1)2+
3
3

∴抛物线的对称轴为x=-1.
∵点C在对称轴x=-1上,△BOC的周长=OB+BC+CO;
∵OB=2,要使△BOC的周长最小,必须BC+CO最小,
∵点O与点A关于直线x=-1对称,有CO=CA,
△BOC的周长=OB+BC+CO=OB+BC+CA,
∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.
设直线AB的解析式为y=kx+t,则有:
-2k+t=0
k+t=-
3
,解得:
k=-
3
3
t=-
2
3
3

∴直线AB的解析式为y=-
3
3
x-
2
3
3

当x=-1时,y=-
3
3

∴所求点C的坐标为(-1,-
3
3
);

(3)设P(x,y)(-2<x<0,y>0),
则y=-
3
3
x2-
2
3
3
x  ①
如答图②所示,过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E,则PQ=-x,PG=-y,
由题意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP
=
1
2
(AF+BE)•FE-
1
2
AF•FP-
1
2
PE•BE
=
1
2
(y+
3
+y)(1+2)-
1
2
y•(2+x)-
1
2
(1-x)(
3
+y)
=
3
2
y+
3
2
x+
3
  ②
将①代入②得:S△PAB=
3
2
(-
3
3
x2-
2
3
3
x)+
3
2
x+
3

=-
3
2
x2-
3
2
x+
3

=-
3
2
(x+
1
2
2+
9
3
8

∴当x=-
1
2
时,△PAB的面积最大,最大值为
9
3
8

此时y=-
3
3
×
1
4
+
2
3
3
×
1
2
=
3
4

∴点P的坐标为(-
1
2
3
4
).
点评:本题考查了坐标系中点的坐标求法,抛物线解析式的求法,根据对称性求线段和最小的问题,也考查了在坐标系里表示面积及求面积最大值等问题;解答本题(3)也可以将直线AB向下平移至与抛物线相切的位置,联立此时的直线解析式与抛物线解析式,可求唯一交点P的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•泸州)如图所示为某几何体的示意图,则该几何体的主视图应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10
5
cm,且tan∠EFC=
3
4
,那么该矩形的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;
(2)△ABC的面积等于四边形CDOE的面积的2倍;
(3)CD+CE=
2
OA;(4)AD2+BE2=2OP•OC.
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,已知函数y=
4
3
x与反比例函数y=
k
x
(x>0)的图象交于点A.将y=
4
3
x的图象向下平移6个单位后与双曲线y=
k
x
交于点B,与x轴交于点C.
(1)求点C的坐标;
(2)若
OA
CB
=2,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CA•CB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=
23
,求BE的长.

查看答案和解析>>

同步练习册答案