精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:

(1)∠BAE的度数;
(2)∠DAE的度数;

【答案】
(1)解:∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,
∵AE平分∠BAC,
∴∠BAE=1/2∠BAC=40°
(2)解:∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°-∠B=90°-70°=20°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°
【解析】根据三角形内角和定理得∠BAC=180°-∠B-∠C=80°,然后根据角平分线定义得∠BAE=∠BAC=40°;
由于AD⊥BC,则∠ADE=90°,根据三角形外角性质得∠ADE=∠B+∠BAD,所以∠BAD=90°-∠B=20°,然后利用∠DAE=∠BAE-∠BAD进行计算;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】向东行进-30米表示的意义是(
A.向东行进30米
B.向东行进-30米
C.向西行进30米
D.向西行进-30米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线yx2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC=45°,ADE是等腰直角三角形,AE=AD,顶点A、D分别再ABC的两边BA、BC上滑动(不与点B重合),ADE的外接圆交BC于点F,O为圆心.

(1)直接写出AFE的度数;

(2)当点D在点F的右侧时,①求证:EF﹣DF=AF;

②若AB=BE,求O的面积S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.
(1)求∠CAE的度数;
(2)求证:△ADE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.

(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F,试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年黑龙江省地区生产总值实现15083亿元,用科学记数法表示15083亿元为_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(
A.45°
B.54°
C.40°
D.50°

查看答案和解析>>

同步练习册答案