精英家教网 > 初中数学 > 题目详情
20.若x-2y的值是3,则1-2x+4y的值是(  )
A.7B.5C.1D.-5

分析 原式变形后,将已知等式代入计算即可求出值.

解答 解:∵x-2y=3,
∴原式=1-2(x-2y)=1-2×3=-5,
故选D.

点评 此题考查了代数式求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.下列计算正确的是(  )
A.2a3+3a3=5a6B.(x42=x6C.-2m(m-3)=-2m2-6mD.(3a+2)(3a-2)=9a2-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若|x|=|-3|,则x=±3;若x2=(-3)2,则x=±3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在Rt△ABC中,已知∠C=90°,AC=10,BC=4,点P在线段AC上,点Q在AC的垂线AD上,若PQ=AB,则CP=6时,才能使△ABC和△APQ全等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.-$\frac{1}{3}$的绝对值是(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在抛物线y=x2-6x+c上有三个点,A(-1,y1),B(2,y2),C(3+$\sqrt{2}$,y3)三点,则y1,y2,y3的大小关系是(  )
A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在△ABC中,∠C=90°,∠B=30°,AC=5$\sqrt{2}$,BC=5$\sqrt{6}$,CD⊥AB于点D.
(1)求CD的长;
(2)若以AC边为对称轴,作△ABC的对称图形,得到△AB′C,点B与B′为对应点,求△AB′B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在等腰三角形ABC中,∠A、∠B、∠C的对边分别是a、b、c,已知a=3,b、c是关于x一元二次方程x2+mx+2-m=0的两个实数根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读下列材料:
在数学课上,老师请同学们思考下列问题:如图1,我们把一个四边形ABCD的四边中点E、F、G、H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题时,有如下思路:连接AC.
点E、F分别是AB、BC的中点$\stackrel{三角形中位线定理}{→}$EF∥AC,EF=$\frac{1}{2}$AC;
点H、G分别是AD、CD的中点$\stackrel{三角形中位线定理}{→}$HG∥AC,HG=$\frac{1}{2}$AC
→EF∥HG,EF=HG→四边形EFGH是平行四边形.
结合小敏的思路作答:
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?请说明理由;
参考小敏思考问题的方法,解决以下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么关系时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

同步练习册答案