【题目】如图,一次函数的图像与反比例函数的图像交于点A(2,4)和点B(n,-2),与轴交于点C.
(1)求m,n的值;
(2)当时,请直接写出的取值范围;
(3)点B关于轴的对称点是B′,连接AB′,CB′,求△AB′C的面积.
【答案】(1)m=8,n=-4;
(2)-4<x<0,或x>2
(3)8
【解析】
(1)把A点坐标代入反比例函数求出m,把点(n,-2)代入反比例函数求出n,(2)由A,B的坐标即可根据图像求出的取值;(3)求出直线AB解析式,得到C点坐标,找到B’的坐标,根据割补法即可求出△AB′C的面积.
(1)把A点坐标代入反比例函数得m=8,
把点(n,-2)代入,得出n=-4;
(2)由A(2,4),B(-4,-2)
故的解集为-4<x<0,或x>2
(3)将点A(2,4),B(-4,-2)代入,可得,
解得:k=1,b=2,所以,
当x=0时,y=2,所以C(0,2),
如图,作B’(4,-2),D(0,4)E(4,4),F(0,-2)
∴S△AB′C=S矩形DEB’F-S△B’FC- S△ADC -S△B’AE
==8.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:①(0)-12017)2018 ; ②a3b2c4)32)2;
③(x+3)(x)(x2) ; ④ 19982+7992+22(用公式计算).
(2)(2a+b)(2ab)(a2b)2+(6a44a2)÷(2a2),其中a=,b=1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中,画出一个与△ABC成中心对称的格点三角形;
(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;
(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形;
(4)在图4中,画出所有格点△BCD,使△BCD为等腰直角三角形,且S△BCD=4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,能判定四边形ABCD为平行四边形的个数是( )
①AB∥CD,AD=BC ; ②AB=CD,AD=BC;③∠A=∠B,∠C=∠D; ④AB=AD,CB=CD.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P为⊙O外一点,PA、PB分别切⊙O于A、B两点,点C为⊙O上一点.
(1)如图1,若AC为直径,求证:OP∥BC;
(2)如图2,若sin∠P=,求tanC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学进入初四后,某科6次考试成绩如图:
(1)请根据下图填写如表:
平均数 | 方差 | 中位数 | 众数 | 极差 | |
甲 | 75 | 75 | |||
乙 | 33.3 | 15 |
(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行
①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com