分析 (1)一元二次方程x2-2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;
(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m;
(3)由x12-x22=0,利用平方差公式以及x1+x2=2可得x1-x2=0,则方程x2-2x+m=0有两个相等的实数根,△=(-2)2-4m=0,即可求出m=1.
解答 解:(1)∵方程x2-2x+m=0有两个实数根,
∴△=(-2)2-4m≥0,
解得m≤1;
(2)由两根关系可知,x1+x2=2,x1•x2=m,
解方程组$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=2}\\{{x}_{1}+3{x}_{2}=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=\frac{3}{2}}\\{{x}_{2}=\frac{1}{2}}\end{array}\right.$,
∴m=x1•x2=$\frac{3}{2}$×$\frac{1}{2}$=$\frac{3}{4}$;
(3)∵x12-x22=0,
∴(x1+x2)(x1-x2)=0,
∵x1+x2=2≠0,
∴x1-x2=0,
∴方程x2-2x+m=0有两个相等的实数根,
∴△=(-2)2-4m=0,
解得m=1.
点评 本题考查了一元二次方程根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.也考查了根的情况与判别式△的关系.
科目:初中数学 来源: 题型:选择题
A. | y1<y2<y3 | B. | y2<y3<y1 | C. | y3<y1<y2 | D. | y1<y3<y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com