7£®ÔÚ×ø±êƽÃæÄÚ£¬Èç¹ûÒ»¸ö͹ËıßÐεÄÁ½Ìõ¶Ô½ÇÏß·Ö±ðƽÐÐÓÚ×ø±êÖᣬÇÒÓÐÒ»Ìõ¶Ô½ÇÏßÇ¡ºÃƽ·ÖÁíÒ»Ìõ¶Ô½ÇÏߣ¬Ôò°ÑÕâÑùµÄ͹ËıßÐγÆΪ×ø±êƽÃæÄڵġ°¹~×´ËıßÐΡ±£®
£¨1£©ÒÑÖª¹~×´ËıßÐÎABCDµÄÈý¸ö¶¥µã×ø±êΪA£¨3£¬2£©£¬B£¨5£¬1£©£¬C£¨8£¬2£©£¬Ôò¶¥µãDµÄ×ø±êΪ¶àÉÙ£®
£¨2£©Èç¹û¹~×´ËıßÐÎABCDµÄÈý¸ö¶¥µã×ø±êΪA£¨-6£¬-3£©£¬B£¨-4£¬-6£©£¬C£¨-2£¬-3£©£¬Ôò¶¥µãD×Ý×ø±êyµÄÈ¡Öµ·¶Î§Îª¶àÉÙ£®
£¨3£©ÒÑÖªÃæ»ýΪ30µÄ¹~×´ËıßÐÎABCDÏàÁÚÁ½¸ö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨3£¬1£©£¬B£¨6£¬3£©£¬ÆäÖÐÒ»Ìõ¶Ô½ÇÏß³¤Îª6£¬M£¬N·Ö±ðÊÇAB£¬BCµÄÖе㣬PΪ¶Ô½ÇÏßÉÏÒ»¶¯µã£¬Á¬½áMN£¬MP£¬NP£¬ÊÔÇó¡÷MNPÖܳ¤µÄ×îСֵ£®

·ÖÎö £¨1£©¸ù¾Ý¡°¹~×´ËıßÐΡ±µÄ¶¨Òå¼´¿ÉÇó³öµãD×ø±ê£®
£¨2£©»­³öͼÐΣ¬¼´¿ÉÅж¨µãDµÄ×Ý×ø±êyµÄÈ¡Öµ·¶Î§£®
£¨3£©·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¢Ùµ±µãPÔÚ¶Ô½ÇÏßACÉÏʱ£¬×÷µãM¹ØÓÚACµÄ¶Ô³ÆµãK£¬Á¬½ÓKN½»ACÓÚµãP£¬´Ëʱ¡÷PMNµÄÖܳ¤×îС£®¢Úµ±µãPÔÚ¶Ô½ÇÏßBDÉÏʱ£¬¡÷PMNµÄÖܳ¤µÄ×îСֵ²»´æÔÚ£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬

ÓÉÌâÒâAC´¹Ö±Æ½·ÖÏ߶ÎÏ߶ÎBD£¬¿ÉÖªB¡¢D¹ØÓÚÖ±ÏßAC¶Ô³Æ£¬
¡ßA£¨3£¬2£©£¬B£¨5£¬1£©£¬C£¨8£¬2£©£¬
¡àD£¨5£¬3£©£®

£¨2£©Èçͼ2ÖУ¬

ÓÉÌâÒâ¿ÉÖª£¬BD´¹Ö±Æ½·ÖÏ߶ÎAC£¬
¡ßËıßÐÎABCDÊÇ͹ËıßÐΣ¬A£¨-6£¬-3£©£¬B£¨-4£¬-6£©£¬C£¨-2£¬-3£©£¬
¡à¶¥µãD×Ý×ø±êyµÄÈ¡Öµ·¶Î§£ºy£¾-3£®

£¨3£©Èçͼ3ÖУ¬

¢Ùµ±µãPÔÚ¶Ô½ÇÏßACÉÏʱ£¬×÷µãM¹ØÓÚACµÄ¶Ô³ÆµãK£¬Á¬½ÓKN½»ACÓÚµãP£¬´Ëʱ¡÷PMNµÄÖܳ¤×îС£®
ÓÉÌâÒâA£¨3£¬1£©£¬B£¨6£¬3£©£¬
¡ß¶Ô½ÇÏßBD=6£¬
¡àD£¨0£¬3£©£¬
¡ß$\frac{1}{2}$¡Á6¡ÁAC=30£¬
¡àAC=10£¬
¡àC£¨3£¬11£©£¬
¡àM£¨4.5£¬2£©£¬N£¨4.5£¬7£©£¬K£¨1.5£¬2£©
¡àMN=5£¬KN=$\sqrt{{3}^{2}+{5}^{2}}$=$\sqrt{34}$£¬
¡÷PMNµÄÖܳ¤µÄ×îСֵΪ$\sqrt{34}$+5£®
¢Úµ±M£¬N·Ö±ðÊÇAB£¬BC¡äµÄÖе㣬P¡äΪ¶Ô½ÇÏßAC¡äÉÏÒ»¶¯µã£¬Í¬·¨¿ÉÇó¡÷P¡äM¡äN¡äÖܳ¤µÄ×îСֵΪ3+$\sqrt{13}$£®
¡à¡÷PMNµÄÖܳ¤µÄ×îСֵÎÊÌâ$\sqrt{34}$+5»ò3+$\sqrt{13}$£®

µãÆÀ ±¾Ì⿼²éÈý½ÇÐÎ×ÛºÏÌâ¡¢Öá¶Ô³Æ-×î¶ÌÎÊÌâ¡¢¡°¹~×´ËıßÐΡ±µÄ¶¨ÒåµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ѧ»áÀûÓÃÖá¶Ô³Æ½â¾ö×î¶ÌÎÊÌ⣬ÊôÓÚÖп¼´´ÐÂÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£®£¨2x-y£©2-£¨3y3-6xy2£©¡Â3y£¬ÆäÖÐx=-1£¬y=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èç¹ûtÊÇ·½³Ìx2-2x-1=0µÄ¸ù£¬ÄÇô´úÊýʽ2t2-4tµÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÇåÃ÷½ÚÊǼÀ×æºÍɨŵÄÈÕ×Ó£¬¾ÝÄþ²¨ÊÐÃñÕþ¾ÖÉç»áÊÂÎñ´¦µÄÊý¾ÝÏÔʾ£¬½ñÄêÇåÃ÷ÆÚ¼äÈ«ÊмÀɨÈËÊý³¬300ÍòÈ˴Σ¬ÆäÖеÄ300ÍòÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®3¡Á105B£®3¡Á106C£®30¡Á105D£®0.3¡Á106

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬ABΪ¡ÑOµÄÄÚ½ÓÕý¶à±ßÐεÄÒ»±ß£¬ÒÑÖª¡ÏOAB=70¡ã£¬ÔòÕâ¸öÕý¶à±ßÐεÄÄڽǺÍΪ1260¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁз½³Ì×éÖУ¬Îª¶þÔªÒ»´Î·½³Ì×éµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{\frac{1}{x}=3}\\{x-y=4}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+1=3}\\{y+2=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{xy=1}\\{3x-2y=-1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x-3y=3}\\{y=-1}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®2x+3y=5xyB£®a6¡Âa=a5C£®x3•x4=x12D£®${£¨\sqrt{3}+2£©}^{2}$=7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®$\root{3}{64}$µÄËãÊõƽ·½¸ùÊÇ£¨¡¡¡¡£©
A£®2B£®-2C£®$\sqrt{2}$D£®¡À$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®-|-2017|µÈÓÚ£¨¡¡¡¡£©
A£®2017B£®-2017C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸