精英家教网 > 初中数学 > 题目详情
(2011•綦江县)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为(  )

A、6π      B、5π
C、3π      D、2π
:解:∵PA、PB是⊙O的切线,
∴∠OAP=∠OBP=90°,
而∠P=60°,
∴∠AOB=120°,
∠AOB所对弧的长度==2π.
故选D.
:由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是(   )
A.cmB.3cmC.6cmD.9cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分9分)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O
上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.
(1)求证:DC=BC;  
(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(9分)
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
 

纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.
探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直
接写出方案三的利用率.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为(  )
A.2cmB.cmC.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

.如图,⊙0内切于△ABC,切点分别为D、E、F. 已知<B=50°,<C=60°,连结OE、OF、DE、DF.则<EDF=             度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

.(8分)如图,四边形是平行四边形,以AB为直径的⊙O经过点D,点E是⊙O上一点,且∠AED=45°。
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为,求∠ADE的正弦值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是(  )
A.内含B.内切C.相交D.外切

查看答案和解析>>

同步练习册答案