精英家教网 > 初中数学 > 题目详情
如右图,正六边形ABCDEF的边长为2,两顶点A、B分别在x轴和y轴上运动,则顶点D到原点O的距离的最大值和最小值的乘积为   
12.

试题分析:根据已知得出D点的两个特殊位置,进而求出即可.
当O、D、AB中点共线时,OD有最大值和最小值,
如图,

BD=2,BK=1,
∴DK=,OK=BK=1,
∴OD的最大值为:1+
同理,把图象沿AB边翻折180°得最小值为:-1,
∴顶点D到原点O的距离的最大值和最小值的乘积为:(1+)(-1)=12.
考点: 1.正多边形和圆;2.坐标与图形性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB=AC,过点A作AD∥BC交BO的延长线于点D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径OB=5,BC=8,求线段AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两圆的半径R、r分别为方程x2-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是(  )
A.外离B.内切C.相交D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区.
(1)求圆形区域的面积;
(2)某时刻海面上出现-渔船A,在观测点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离.(≈1.7,保留三个有效数字);
(3)当渔船A由(2)中位置向正西方向航行时,是否会进入海洋生物保护区?通过计算回答。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1、⊙O2的半径不相等,⊙O1的半径长为3,若⊙O2上的点A满足AO1=3,则⊙O1与⊙O2的位置关系是(   )
A.相交或相切B.相切或相离C.相交或内含 D.相切或内含

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是⊙O的直径,∠ADC=30°, OA=2,则长为(     ) .
A.2B.4C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知如图,直角三角形纸片中,∠C=90°,AC=6,BC=8,若要在纸片中剪出两个相外切的等圆,则圆的半径最大为(   )
A.B.C.1D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是(  )
A.8
B.2
C.2或8
D.3或7

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个扇形的圆心角为60°,它所对的弧长为πcm,则这个扇形的半径为                .

查看答案和解析>>

同步练习册答案