精英家教网 > 初中数学 > 题目详情

【题目】如图,一艘海轮位于灯塔P的南偏东30°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.

1)问B处距离灯塔P有多远?(结果精确到0.1海里)

2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海轮从B处继续向正北方向航行,是否有触礁的危险?并说明理由.(参考数据:≈1.414≈1.732

【答案】170.7海里;(2)有触礁的危险,理由见解析

【解析】

1)作PDAB于点D,由PA=100,∠APD=60°,∠BPD=45°知∠A=30°,从而得PD=50,再由BD=PD=50PB=50≈70.7
2)过点OOEAB,交AB延长线于点E,由OE≈56.0760即可判断.

1)过点PPDAB于点D

依题意可知,PA100,∠APD60°,∠BPD45°

∴∠A30°

PD50

在△PBD中,BDPD50

PB50≈70.7

答:B处距离灯塔P70.7海里.

2)依题意知:OP150OB15050

∴海轮到达B处没有触礁的危险.

过点OOEAB,交AB延长线于点E

∵∠OBE=∠PBD45°

OEOBsinOBE=(15050×7550≈56.0760

∴海轮从B处继续向正北方向航行,有触礁的危险.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一座古拱桥的截面图拱桥桥洞的上沿是抛物线形状当水面的宽度为10m桥洞与水面

的最大距离是5m

1经过讨论同学们得出三种建立平面直角坐标系的方案如下图

你选择的方案是_____填方案一方案二或方案三),B点坐标是______求出你所选方案中的抛物线的表达式

2因为上游水库泄洪水面宽度变为6m求水面上涨的高度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,BAD=60°,OCE的面积是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角ABC中,ABAC,边BC长为6,高AD长为4,正方形PQMN的两个顶点在ABC一边上,另两个顶点分别在ABC的另两边上,则正方形PQMN的边长为(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线ACBD相交于点O,点EF分别是边ADAB上的点,连结OEOFEF.若AB=7BC=5,∠DAB=45°,则①点C到直线AB的距离是_____.②△OEF周长的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),Cx轴正半轴上,A在第二象限双曲线y=﹣上,过DDEx轴交双曲线于E,连接CE,则△CDE的面积为(

A.3B.C.4D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c的图象经过点A33)、B40)和原点OP为直线OA上方抛物线上的一个动点.

1)求直线OA及抛物线的解析式;

2)过点Px轴的垂线,垂足为D,并与直线OA交于点C,当△PCO为等腰三角形时,求D的坐标;

3)设P关于对称轴的点为Q,抛物线的顶点为M,探索是否存在一点P,使得△PQM的面积为,如果存在,求出P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】植树节期间,某校倡议学生利用双休日“植树”劳动,为了解同学们劳动情况.学校随机调查了部分学生的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回顾下列:

(1)通过计算,将条形图补充完整;

(2)扇形图形中“1.5小时”部分圆心角是

查看答案和解析>>

同步练习册答案