精英家教网 > 初中数学 > 题目详情
已知α,β是△ABC的两个角,且sinα,tanβ是方程2x2-3x+1=0的两根,则△ABC是(  )
A、锐角三角形B、直角三角形或钝角三角形C、钝角三角形D、等边三角形
分析:先解出方程的两根,讨论sinα,tanβ的值.∵在三角形中,角的范围是(0,180°),∴sinα必大于0,此时只要考虑tanβ的值即可,若tanβ>0,则β为锐角;tanβ小于0,则β为钝角.再把x的两个值分别代入sinα,tanβ中,可求出α,β的值,从而判断△ABC的形状.
解答:解:由2x2-3x+1=0得:(2x-1)(x-1)=0,∴x=
1
2
或x=1.
∴sinα>0,tanβ>0
若sinα=
1
2
,tanβ=1,则α=30°,β=45°,γ=180°-30°-45°=105°,
∴△ABC为钝角三角形.
若sinα=1,tanβ=
1
2
,则α=90°,β<90°,△ABC为直角三角形.
故选B.
点评:本题易在α,β上的取值出错,学生常常解出方程的两根后不知道如何判断,因此在解答时我们可对x的值分类讨论,从而判断出△ABC的形状.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知BE、CF是△ABC的角平分线,BE、CF相交于点D,若∠A=50°,则BE与CF相交能成的角为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、已知BD、CE是△ABC的高,直线BD、CE相交所成的角中有一个角为50°,则∠BAC等于
50或130
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知BD,CE是△ABC的两条高,M、N分别为BC、DE的中点,勇敢猜一猜:
(1)线段EM与DM的大小有什么关系?
(2)线段MN与DE的位置有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点O是△ABC内任意一点,D,E,F,G分别是OA,OB,BC,AC的中点.
求证:四边形DEFG是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b是△ABC的两条边长,且a,b满足
a-3
+(b-4)2=0
,求a,b的值.

查看答案和解析>>

同步练习册答案