精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABE≌△ACD.

(1)如果BE=6,DE=2,求BC的长;

(2)如果∠BAC=75°,BAD=30°,求∠DAE的度数.

【答案】(1)10;(2)15°

【解析】

(1)根据全等三角形的性质,可得出BE=CD,根据BE=6,DE=2,得出CE=4,从而得出BC的长;

(2)根据全等三角形的性质可得出∠BAE=∠CAD,即可得出∠BAD=∠CAE,计算∠CAD﹣∠CAE即得出答案.

解:(1)∵△ABE≌△ACD,

BE=CD,BAE=CAD,

又∵BE=6,DE=2,

EC=DC﹣DE=BE﹣DE=4,

BC=BE+EC=10;

(2)CAD=BAC﹣BAD=75°﹣30°=45°,

∴∠BAE=CAD=45°,

∴∠DAE=BAE﹣BAD=45°﹣30°=15°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1+ 2=180° 以∠A= D.求证:AB//CD.(在每步证明过程后面注明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,MN分别是CDBC的中点,且AMCDANBC

(1)求证:∠BAD=2MAN

(2)连接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t

(分)之间的关系如图所示,下列结论:

甲步行的速度为60/分;

乙走完全程用了30分钟;

乙用16分钟追上甲;

乙到达终点时,甲离终点还有320

其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P (xy),若点Q的坐标为(ax+yx+ay) 其中a为常数,则称点Q是点P“a级关联点",例如,点P(14)“3级关联点"Q (3×1+41+3×4) Q (713)

(1)已知点A (-26)级关联点是点A1,点B“2级关联点B1 (3 3) 求点A1和点B的坐标:

(2)已知点M (m-1 2m)“-3级关联点"M位于坐标轴上,求M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+x+x轴交于点A,B(A在点B的左侧),y轴交于点C.

(1)求点A,B,C的坐标;

(2)若该抛物线的顶点是点D,求四边形OCDB的面积;

(3)已知点P是该抛物线对称轴的一点,若以点P,O,D为顶点的三角形是等腰三角形,请直接写出点P的坐标.(不用说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC和△ADE中,,边AD与边BC交于点P(不与点BC重合),点BEAD异侧,AICI分别平分

1)求证:

2)设,请用含的式子表示PD,并求PD的最大值;

3)当时,的取值范围为,分别直接写出mn的值.

查看答案和解析>>

同步练习册答案