分析 (1)四边形CEDF是矩形,理由是由CD是⊙O的直径,得出∠CFD=∠CED=90°,证出平行四边形ADBC,得出CB∥AD,根据平行线的性质得出∠EDF=90°,即可判断出答案;
(2)在Rt△ACO中,OA=$\sqrt{5}$,OC=1,根据勾股定理求出AC,推出CD=AC=2,∠CDE=45°,进一步推出DE=CE,即可推出答案.
解答 解:(1)四边形CEDF是矩形.
证明:∵CD是⊙O的直径,
∴∠CFD=∠CED=90°,
∵CD⊙O的直径,
∴OC=OD,∵OA=OB,
∴四边形ADBC是平行四边形,
∴CB∥AD,
∴∠CFD+∠EDF=180°,
∴∠EDF=90°,
∴四边形CEDF是矩形.
(2)解:四边形CEDF是正方形.
理由:∵AC是⊙O的切线,CD是直径,
∴∠ACD=90°,
在Rt△ACO中,OA=$\sqrt{5}$,OC=$\frac{1}{2}$CD=1,AC2+12=5,
∴AC=2,
则CD=AC=2,∠CDE=45°,
∴DE=CE,
∴矩形CEDF是正方形.
点评 本题主要考查了对勾股定理,平行四边形的性质和判定,矩形的判定,正方形的判定,切线的性质,平行线的性质等知识点的理解和掌握,综合运用这些性质进行推理是证此题的关键,题型较好,难度适中.
科目:初中数学 来源: 题型:选择题
A. | (1007,1008) | B. | (1008,1007) | C. | (1006,1007) | D. | (1007,1006) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-ab2)3÷(ab2)2=-ab2 | B. | 3a+2a=5a2 | C. | (2a+b)(2a-b)=2a2-b2 | D. | (2a+b)2=4a2+b2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
总数量(件) | 总金额 | ||
甲 | 乙 | ||
第一天 | 20 | 10 | 280 |
第二天 | 15 | 15 | 27x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com