精英家教网 > 初中数学 > 题目详情
14.如图:CD是⊙O的直径,线段AB过圆心O,且OA=OB=$\sqrt{5}$,CD=2,连接AC、AD、BD、BC、AD、CB分别交⊙O于E、F.
(1)问四边形CEDF是何种特殊四边形?请证明你的结论;
(2)当AC与⊙O相切时,四边形CEDF是正方形吗?请说明理由.

分析 (1)四边形CEDF是矩形,理由是由CD是⊙O的直径,得出∠CFD=∠CED=90°,证出平行四边形ADBC,得出CB∥AD,根据平行线的性质得出∠EDF=90°,即可判断出答案;
(2)在Rt△ACO中,OA=$\sqrt{5}$,OC=1,根据勾股定理求出AC,推出CD=AC=2,∠CDE=45°,进一步推出DE=CE,即可推出答案.

解答 解:(1)四边形CEDF是矩形.
证明:∵CD是⊙O的直径,
∴∠CFD=∠CED=90°,
∵CD⊙O的直径,
∴OC=OD,∵OA=OB,
∴四边形ADBC是平行四边形,
∴CB∥AD,
∴∠CFD+∠EDF=180°,
∴∠EDF=90°,
∴四边形CEDF是矩形.

(2)解:四边形CEDF是正方形.
理由:∵AC是⊙O的切线,CD是直径,
∴∠ACD=90°,
在Rt△ACO中,OA=$\sqrt{5}$,OC=$\frac{1}{2}$CD=1,AC2+12=5,
∴AC=2,
则CD=AC=2,∠CDE=45°,
∴DE=CE,
∴矩形CEDF是正方形.

点评 本题主要考查了对勾股定理,平行四边形的性质和判定,矩形的判定,正方形的判定,切线的性质,平行线的性质等知识点的理解和掌握,综合运用这些性质进行推理是证此题的关键,题型较好,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为(  )
A.(1007,1008)B.(1008,1007)C.(1006,1007)D.(1007,1006)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图甲,点E为矩形ABCD边AD上一点,点P,Q同时从B点出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图乙(曲线OM为抛物线的一部分),则下列结论:
①当0<t≤5时,y=$\frac{2}{5}$t2
②tan∠ABE=$\frac{3}{4}$
③点H的坐标为(11,0)
④△ABE与△QBP不可能相似.
其中正确的是①②③(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知a,b满足方程组$\left\{\begin{array}{l}{2a-b=2}\\{a+2b=5}\end{array}\right.$,则2a+b的值为$\frac{26}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在?ABCD中,BC=6,S?ABCD=12,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知二次函数y=x2-x-1的图象与x轴的一个交点为(m,0),则代数式m2-m+2015的值为2016.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列运算正确的是(  )
A.(-ab23÷(ab22=-ab2B.3a+2a=5a2C.(2a+b)(2a-b)=2a2-b2D.(2a+b)2=4a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线y=-$\frac{1}{m}$(x+2)(x-m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.
(1)若抛物线过点G(2,2),求实数m的值;
(2)在(1)的条件下,解答下列问题:
①求出△ABC的面积;
②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;
(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某商场两天销售甲、乙两种商品的记录如表,由于售货员字迹潦草,无法准确确认第二天的总金额的个位数字,只知道个位数是0或6,并且已知两种商品的销售价仅为整数.
总数量(件)总金额
第一天2010280
第二天151527x
(1)请求出甲、乙两种商品的销售价格各为多少?
(2)若一件甲商品进价为7元,一件乙商品的进价为6元,某天共卖出40件,且两者总利润不低于100元,则至多销售乙商品多少件?

查看答案和解析>>

同步练习册答案