精英家教网 > 初中数学 > 题目详情

【题目】如图,将半径为6的⊙O沿AB折叠,弧AB与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为( )

A.  
B.
C.6   
D.

【答案】B
【解析】延长CO交AB于E点,连接OB,构造直角三角形,然后再根据勾股定理求出AB的长。
延长CO交AB于E点,连接OB,

∵CE⊥AB,
∴E为AB的中点,
∵OC=6,CD=2OD,
∴CD=4,OD=2,OB=6,
∴DE=(2OC-CD)=(6×2-4)=×8=4,
∴OE=DE-OD=4-2=2,
在Rt△OEB中,
∵OE2+BE2=OB2

∴AB=2BE=
故选B.
【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).

(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面上,Rt△ABC与直径为CE的半圆O,如图1摆放,∠B=90°,BC=m,AC=2CE=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转,且∠ECD=∠ACB,旋转角记为α(0°≤α≤180°).
(1)①当α=0°时,连接DE,则∠CDE=°,CD=;②当α=180°时, =
(2)试判断:旋转过程中 的大小有无变化?请仅就图2的情形给出证明.
(3)若m=4,n=5,当α=∠ACB时,线段BD=
(4)若m=4 ,n=6,当半圆O旋转至与△ABC的边相切时,线段BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.

(1)发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:
(2)引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:
(3)如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,则SABC、SAEN、SBMF、SDCG的关系是
(4)运用:某小区中有一块空地,要在其中建三个正方形健身场所(如图3),其余空地修成草坪.若已知其中一个正方形的边长为5m,另一个正方形的边长为4m,则草坪的最大面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.

(1)a= 时,求抛物线的解析式和BC的长;
(2)如图a>1时,若AP⊥PC,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,

求证:四边形ABCD是四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明;
(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是直角边长为2a的等腰直角三角形,直角边AB是半圆O1的直径,半圆O2过C点且与半圆O1相切,则图中阴影部分的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y= 与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案