精英家教网 > 初中数学 > 题目详情

【题目】如图,E是正方形ABCD的边AB上的动点,但始终保持EFDE交BC于点F.

(1)求证:△ADE∽△BEF;

(2)若正方形的边长为4,设AE=x,BF=y,求y与x之间的函数解析式;

(3)当x取何值时,y有最大值?并求出这个最大值.

【答案】(1)证明见解析;(2) ;(3)当 取得最大值 .

【解析】试题分析:(1)根据正方形的性质及余角的性质得出△ADE与△BEF的两对应角相等,从而得出△ADE∽△BEF;
(2)根据相似三角形的性质得出y关于x的函数解析式及函数的定义域;
(3)利用配方法,即可解决问题;

试题解析:

(1)∵ 四边形ABCD是正方形,

∴ ∠A=∠B=90°,∴ ∠1+∠2=90°,

又∵,∴ ∠2+∠3=90°,∴ ∠1=∠3 ,

(2)依题意知:ABAD=4,

,∴ BE

由(1)知, ∴

(3)∵

∴ 当 取得最大值 .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A40)、B-60),点Cy轴上的一个动点,当∠BCA=45°时,点C的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PEABE,PFACF,MEF中点,则AM的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)操作发现:

如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.

(2)类比探究:

如图,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.

(1)求抛物线的表达式;

(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;

(3)如图2,过点F作FMx轴,垂足为M,交直线AC于P,过点P作PNy轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解方程组

2)解不等式

3)利用简单方法计算:

4)因式分解:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂线平分线交AB于点F,交BC的延长线于点E,连接AE,DF.

求证:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.

(1)求过A、B、C三点的抛物线的解析式;

(2)设点M是x轴上的动点,试问:在平面直角坐标系中,是否存在点N,使得以点A,B,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由;

(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,选择一种情况加以说明;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角中,边上的高. ,.连接,交的延长线于点,连接.下列结论:;;;.其中一定正确的个数是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案