精英家教网 > 初中数学 > 题目详情
18.水果店进了1批水果,原按50%的利润率定价,销去一半以后为尽快销完,准备打折出售,若要使总利润不低于30%,问余下水果可按原定价的几折出售(精确到0.1折)?

分析 设水果原价为m元,则定价为1.5m元,余下水果打x折销售,根据利润率公式列出不等式求解可得.

解答 解:设水果原价为m元,则定价为1.5m元,余下水果打x折销售,
根据题意,得:$\frac{\frac{1}{2}×(1.5m-m)+\frac{1}{2}×(1.5m•\frac{x}{10}-m)}{m}$≥0.3,
解得:x≥$\frac{22}{3}$,
$\frac{22}{3}$≈7.3(折),
答:余下水果可按原定价的7.3折出售.

点评 本题主要考查一元一次不等式的应用,熟练掌握利润率的计算公式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.已知实数x满足x+$\frac{1}{x}$=3,则x2+$\frac{1}{x^2}$的值为7;已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$,则$\frac{2x+y-z}{3x-2y+z}$=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,如图,在△ABC中,AB=12,BC=13,以BC为斜边作等腰直角△BCD,E为AC边中点,若∠BAD=45°,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小明为一个矩形娱乐场所提供了如下的设计方案,其中半圆形休息区和矩形游泳池以外的地方都是绿地.
(1)游泳池和休息区的面积各是多少?
(2)绿地的面积是多少?
(3)如果这个娱乐场所需要有一半以上的绿地,小明设计的m,n分别是a,b的$\frac{1}{2}$,当a=60米,b=40米时,他的设计方案符合要求吗?(π取值为3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,A(0,3),B(3,0),过B作直线BC⊥x轴,一个动点N自OA的中点M出发,沿直线先到达x轴上的E点,再到直线BC上的F点,最后到达点A.
(1)求多边形AMEF面积的最小值;
(2)求使N点运动的总路径最短的E点、F点的坐标,并求出这个最短的总路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知直线y=kx+b经过点A(-3,-8),且与直线$y=\frac{2}{3}x$的公共点B的横坐标为6.
(1)求直线y=kx+b的表达式;
(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.数学问题:计算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数字问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面积是$\frac{1}{{2}^{n}}$.
根据第n次分割图可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:计算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:根据前面探究结果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.

推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整数,且m≥2,n≥1)
拓广应用:计算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下列材料:
在数学综合实践课上,某小组探究了这样一个问题:已知x-y=3,且x>4,y<3,试确定x+y的取值范围.他们是这样解答的:
解:∵x-y=3,
∴x=y+3,
又∵x>4,
∴y+3>4,
∴y>1,
又∵y<3,
∴1<y<3…①,
同理可得:4<x<6…②,
由①+②得4+1<x+y<3+6
∴x+y的取值范围是5<x+y<9.
请仿照上述方法,解决下列问题:已知x+y=2,且x>1,y>-4,试确定x-y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:$\sqrt{18}$-($\sqrt{2}$+1)-1+($\sqrt{3}$-$\sqrt{2}$)0
(2)用适当的方法解下列方程:
①x2-12x-4=0;
②(x-1)2+2x(x-1)=0.

查看答案和解析>>

同步练习册答案