精英家教网 > 初中数学 > 题目详情

【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 HL ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ∠B≥∠A ,则△ABC≌△DEF.


(1)解:HL;

(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,

∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,

即∠CBG=∠FEH,

在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,

在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,

在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);

(3)解:如图,△DEF和△ABC不全等;

(4)解:若∠B≥∠A,则△ABC≌△DEF.

故答案为:(1)HL;(4)∠B≥∠A.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知正方形ABCD的边长为12cm,ECD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为               cm.

查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),,…都是“梦之点”,显然“梦之点”有无数个。

(1)若点P(2,m)是反比例函数(n为常数,n≠0)的图像上的“梦之点”,求这个反比例函数的解析式;

(2)函数(k,s为常数)的图像上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;

(3)若二次函数(a,b是常数,a>0)的图像上存在两个“梦之点”A

B,且满足-2<<2,=2,令,试求t的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为  cm.

查看答案和解析>>

科目:初中数学 来源: 题型:


某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是

A. 9m             B. 6m             C. m         D. m

查看答案和解析>>

科目:初中数学 来源: 题型:


写出图象经过点(-1,1)的一个函数的解析式是   

查看答案和解析>>

科目:初中数学 来源: 题型:


实数a,b在数轴上的位置如图所示,下列各式正确的是(  )

  A. a+b>0 B. ab>0 C. |a|+b<0 D. a﹣b>0

查看答案和解析>>

科目:初中数学 来源: 题型:


先化简,再求值:,其中

查看答案和解析>>

同步练习册答案