精英家教网 > 初中数学 > 题目详情
12.阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题目:在图(1)正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=$\sqrt{5}$,BC=$\sqrt{2}$;小明同学的做法是:由勾股定理,得AB=AC=$\sqrt{{2^2}+{1^2}}=\sqrt{5}$,BC=$\sqrt{{1^2}+{1^2}}=\sqrt{2}$,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图(2)正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=$\sqrt{10}$.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

分析 (1)根据$\sqrt{{3}^{2}+{4}^{2}}$=5,$\sqrt{10}$=$\sqrt{{1}^{2}+{3}^{2}}$画出图形即可;
(2)根据相似三角形的判定定理得出△ABC∽△A′B′C′,由相似三角形的性质即可得出结论.

解答 解:(1)如图所示;

(2)猜想:∠BAC=∠B′A′C′.
证明:∵$\frac{AB}{A′B′}$=$\frac{AC}{A′C′}$=$\frac{\sqrt{5}}{5}$,$\frac{BC}{B′C′}$=$\frac{\sqrt{2}}{\sqrt{10}}$=$\frac{\sqrt{5}}{5}$,
∴$\frac{AB}{A′B′}$=$\frac{AC}{A′C′}$=$\frac{BC}{B′C′}$,
∴△ABC∽△A′B′C′,
∴∠BAC=∠B′A′C′.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.双曲线y=$\frac{6}{x}$上有三个点(-3,y1),(-1,y2),(2,y3),则y1,y2,y3的大小关系是y2<y1<y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,利用关于坐标轴对称的点的坐标的特点,作出△ABC关于x轴对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,网格中每个小正方形的边长都为1,
(1)求四边形ABCD的面积;
(2)求∠BCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读理解:配方中是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形:a+b=($\sqrt{a}$)2+($\sqrt{b}$)2=($\sqrt{a}$)2+($\sqrt{b}$)2-2 $\sqrt{ab}$+2$\sqrt{ab}$=($\sqrt{a}$-$\sqrt{b}$)2+2$\sqrt{ab}$,
又∵($\sqrt{a}$-$\sqrt{b}$)2≥0,∴($\sqrt{a}$-$\sqrt{b}$)2+2$\sqrt{ab}$≥0+2$\sqrt{ab}$,即a+b≥2$\sqrt{ab}$.
根据上述内容,回答下列问题:在a+b≥2$\sqrt{ab}$(a、b均为正实数)中,若ab为定值p,则a+b≥2$\sqrt{p}$,当且仅当a、b满足a=b时,a+b有最小值2$\sqrt{p}$.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2$\sqrt{ab}$成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=$\frac{4}{x}$的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=22°,那么∠2的度数是(  )
A.30°B.23°C.22°D.15°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:(1+a)(1-a)+(a+1)2,其中a=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,二次函数y=$\frac{1}{2}$x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD,DE,直接写出△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.利用因式分解计算:20142+2014-20152

查看答案和解析>>

同步练习册答案