精英家教网 > 初中数学 > 题目详情
如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
分析:根据全等三角形的判定得出△BAD≌△CAE,进而得出∠ABD=∠ACE,求出∠DBC+∠DCB=∠DBC+∠ACE+∠ACB即可得出答案.
解答:解:BD=CE,BD⊥CE;
理由:∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
AD=AE
∠BAD=∠CAE
AB=AC

∴△BAD≌△CAE(SAS),
∴BD=CE;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE.
点评:此题主要考查了全等三角形的判定与性质和三角形内角和定理等知识,根据已知得出△BAD≌△CAE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在Rt△ABC中,∠C=90°,E为AB的中点,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M在AB上,BC=BD,MC=MD.请说明:AC=AD.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图,已知M在AB上,BC=BD,MC=MD,请说明:AC=AD。

查看答案和解析>>

同步练习册答案